arithmetic

 

  • [104] Unlike rational number arithmetic, real number arithmetic is closed under exponentiation as long as it uses a positive number as its base.

  • An affine form is a number together with error terms that describe how the number may deviate from the actual magnitude.

  • It represents real numbers similar to the scientific notation through three numbers: a significand, a base, and an exponent.

  • [62] Integer arithmetic [edit] Using the number line method, calculating is performed by starting at the origin of the number line then moving five units to right for the
    first addend.

  • [97] One way to calculate exponentiation with a fractional exponent is to perform two separate calculations: one exponentiation using the numerator of the exponent followed
    by drawing the nth root of the result based on the denominator of the exponent.

  • [68] A common technique for multiplication with larger numbers is called long multiplication.

  • [109] One basic way to express the degree of certainty about each number’s value and avoid false precision is to round each measurement to a certain number of digits, called
    significant digits, which are implied to be accurate.

  • [106] In cases where absolute precision is not required, the problem of calculating arithmetic operations on real numbers is usually addressed by truncation or rounding.

  • [4] However, the more common view is to include operations on integers, rational numbers, real numbers, and sometimes also complex numbers in its scope.

  • Using scientific notation, a number is decomposed into the product of a number between 1 and 10, called the significand, and 10 raised to some integer power, called the exponent.

  • [99] The decimal fraction notation is a special way of representing rational numbers whose denominator is a power of 10.

  • [79] Number theory [edit] Main article: Number theory Number theory studies the structure and properties of integers as well as the relations and laws between them.

  • [118] A common method employed by computers to approximate real number arithmetic is called floating-point arithmetic.

  • For example, in the method addition with carries, the two numbers are written one above the other.

  • Because of this, there is often no simple and accurate way to express the results of arithmetic operations like or .

  • For example, subtraction is the inverse of addition since a number returns to its original value if a second number is first added and subsequently subtracted, as in .

  • [7] Arithmetic is closely related to number theory and some authors use the terms as synonyms.

  • The main kinds of numbers employed in arithmetic are natural numbers, whole numbers, integers, rational numbers, and real numbers.

  • They differ from each other based on what type of number they operate on, what numeral system they use to represent them, and whether they operate on mathematical objects
    other than numbers.

  • Rounding is a similar process in which the last preserved digit is increased by one if the next digit is 5 or greater but remains the same if the next digit is less than 5,
    so that the rounded number is the best approximation of a given precision for the original number.

  • [89] According to the fundamental theorem of arithmetic, every integer greater than 1 is either a prime number or can be represented as a unique product of prime numbers.

  • This means that when dividing one integer by another integer, the result is not always an integer.

  • For operations on numbers with more than one digit, different techniques can be employed to calculate the result by using several one-digit operations in a row.

  • [100] Modified versions of integer calculation methods like addition with carry and long multiplication can be applied to calculations with decimal fractions.

  • [a] The whole numbers are identical to the natural numbers with the only difference being that they include 0.

  • Intervals can be used to represent a range of values if one does not know the precise magnitude, for example, because of measurement errors.

  • This means that the result of is sometimes different from the result of .

  • [92] Rational number arithmetic [edit] Rational number arithmetic is the branch of arithmetic that deals with the manipulation of numbers that can be expressed as a ratio
    of two integers.

  • For instance, the rational numbers , , and are written as 0.1, 3.71, and 0.0044 in the decimal fraction notation.

  • [66] A similar technique is utilized for subtraction: it also starts with the rightmost digit and uses a “borrow” or a negative carry for the column on the left if the result
    of the one-digit subtraction is negative.

  • If the multiplicand is a natural number then multiplication is the same as repeated addition, as in .

  • [91] Fermat’s last theorem is the statement that no positive integer values can be found for , , and , to solve the equation if is greater than .

  • Irrational numbers are numbers that cannot be expressed through fractions or repeated decimals, like the root of 2 and π.

  • The logarithm of a number to the base is the exponent to which must be raised to produce .

  • [45] Counting is a type of repeated addition in which the number 1 is continuously added.

  • [65] Other methods used for integer additions are the number line method, the partial sum method, and the compensation method.

  • The symbol of the rational numbers is .

  • If an arithmetic operation results in a number that requires more bits than are available, the computer rounds the result to the closest representable number.

  • Interval arithmetic includes operations like addition and multiplication on intervals, as in and .

  • For example, floating-point addition is not associative since the rounding errors introduced can depend on the order of the additions.

  • Unlike ordinary decimal notation, where trailing zeros of large numbers are implicitly considered to be non-significant, in scientific notation every digit in the significand
    is considered significant, and adding trailing zeros indicates higher precision.

  • [40] Two important concepts in relation to arithmetic operations are identity elements and inverse elements.

  • [23] The set of rational numbers together with the set of irrational numbers makes up the set of real numbers.

  • Arithmetic operations form the basis of many branches of mathematics, such as algebra, calculus, and statistics.

  • [84] Further branches of number theory are probabilistic number theory, which employs methods from probability theory,[85] combinatorial number theory, which relies on the
    field of combinatorics,[86] computational number theory, which approaches number-theoretic problems with computational methods,[87] and applied number theory, which examines the application of number theory to fields like physics, biology,
    and cryptography.

  • Dividing one rational number by another can be achieved by multiplying the first number with the reciprocal of the second number.

  • [6] When understood in a wider sense, it also includes the study of how the concept of numbers developed, the analysis of properties of and relations between numbers, and
    the examination of the axiomatic structure of arithmetic operations.

  • [19] Decimal fractions like 0.3 and 25.12 are a special type of rational numbers since their denominator is a power of 10.

  • [24] Even wider classes of numbers include complex numbers and quaternions.

  • Representing uncertainty using only significant digits is a relatively crude method, with some unintuitive subtleties; explicitly keeping track of an estimate or upper bound
    of the approximation error is a more sophisticated approach.

  • [73] One way to ensure that the result is an integer is to round the result to a whole number.

  • [80] Some of the main branches of modern number theory include elementary number theory, analytic number theory, algebraic number theory, and geometric number theory.

  • One way to get an approximate result for the second operation is to employ Newton’s method, which uses a series of steps to gradually refine an initial guess until it reaches
    the desired level of accuracy.

  • [113] When representing uncertainty by significant digits, uncertainty can be coarsely propagated by rounding the result of adding or subtracting two or more quantities to
    the leftmost last significant decimal place among the summands, and by rounding the result of multiplying or dividing two or more quantities to the least number of significant digits among the factors.

  • [43] Addition and subtraction [edit] Main articles: Addition and Subtraction Addition and subtraction Addition is an arithmetic operation in which two numbers, called the
    addends, are combined into a single number, called the sum.

  • This system makes it cumbersome to write large numbers, which is why many non-positional systems include additional symbols to directly represent larger numbers.

  • [95] Unlike integer arithmetic, rational number arithmetic is closed under division as long as the divisor is not 0.

  • [63] Simple one-digit operations can be performed by following or memorizing a table that presents the results of all possible combinations, like an addition table or a multiplication
    table.

  • It examines problems like how prime numbers are distributed and the claim that every even number is a sum of two prime numbers.

  • There are different kinds of numbers and different numeral systems to represent them.

  • [116] The precision of numerical quantities can be expressed uniformly using normalized scientific notation, which is also convenient for concisely representing numbers which
    are much larger or smaller than 1.

  • The symbol of the real numbers is .

  • [18] A number is rational if it can be represented as the ratio of two integers.

  • [14][b] Some mathematicians do not draw the distinction between the natural and the whole numbers by including 0 in the set of natural numbers.

  • When a number is written using ordinary decimal notation, leading zeros are not significant, and trailing zeros of numbers not written with a decimal point are implicitly
    considered to be non-significant.

  • The symbol of the natural numbers is .

  • Irrational numbers are numbers that cannot be expressed through the ratio of two integers.

  • [39] If these operations are performed on variables rather than numbers, they are sometimes referred to as algebraic operations.

  • For example, the square root of a number is the same as raising the number to the power of and the cube root of a number is the same as raising the number to the power of
    .

  • Arithmetic is present in many aspects of daily life, for example, to calculate change while shopping or to manage personal finances.

 

Works Cited

[‘Other symbols for the natural numbers include , , , and .[13]
2. ^ Other symbols for the whole numbers include , , and .[15]
3. ^ A repeating decimal is a decimal with an infinite number of repeating digits, like 0.111…, which expresses the rational
number .
4. ^ Some authors use a different terminology and refer to the first number as multiplicand and the second number as the multiplier.[51]
5. ^ If the exponent is 0 then the result is 1, as in . The only exception is , which is not defined.[57]
6. ^
Some systems of counting rods include different colors to represent both positive and negative numbers.[133]
7. ^ Some computer scientists see slide rules as the first type of analog computer.[135]
8. ^ The successor of a natural number is the
number that comes after it. For instance, 4 is the successor of 3.
9. ^ There are different versions of the exact formulation and number of axioms. For example, some formulations start with 1 instead of 0 in the first axiom.[149]
10. ^ An influential
argument for Platonism, first formulated by Willard Van Orman Quine and Hilary Putnam, states that numbers exist because they are indispensable to the best scientific theories.[197]
Sources
[edit]
• Achatz, Thomas; Anderson, John G. (2005). Technical
Shop Mathematics. Industrial Press Inc. ISBN 978-0-8311-3086-2.
• Adamowicz, Zofia (1994). “The Power of Exponentiation in Arithmetic”. In Joseph, Anthony; Mignot, Fulbert; Murat, François; Prum, Bernard; Rentschler, Rudolf (eds.). First European
Congress of Mathematics: Paris, July 6-10, 1992 Volume I Invited Lectures (Part 1). Birkhäuser. pp. 299–320. doi:10.1007/978-3-0348-9110-3_9. ISBN 978-3-0348-9110-3.
• Adhami, Reza; Meenen, Peter M.; Meenen, Peter; Hite, Denis (2007). Fundamental
Concepts in Electrical and Computer Engineering with Practical Design Problems. Universal-Publishers. ISBN 978-1-58112-971-7.
• Ali Rahman, Ernna Sukinnah; Shahrill, Masitah; Abbas, Nor Arifahwati; Tan, Abby (2017). “Developing Students’ Mathematical
Skills Involving Order of Operations”. International Journal of Research in Education and Science: 373. doi:10.21890/ijres.327896.
• Ang, Tian Se; Lam, Lay Yong (2004). Fleeting Footsteps: Tracing The Conception Of Arithmetic And Algebra In Ancient
China (Revised ed.). World Scientific. ISBN 978-981-4483-60-5.
• Asano, Akihito (2013). An Introduction to Mathematics for Economics. Cambridge University Press. ISBN 978-1-107-00760-4.
• Askew, Mike (2010). “It Ain’t (Just) What You Do: Effective
Teachers of Numeracy”. In Ian, Thompson (ed.). Issues In Teaching Numeracy In Primary Schools. McGraw-Hill Education (UK). ISBN 978-0-335-24153-8.
• Aubrey, Carol (1999). A Developmental Approach to Early Numeracy: Helping to Raise Children’s Achievements
and Deal with Difficulties in Learning. A&C Black. ISBN 978-1-4411-9164-9.
• Bagaria, Joan (2023). “Set Theory”. The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Retrieved 19 November 2023.
• Barnes, Andrew
J.; Rice, Thomase; Hanoch, Yaniv (2017). “Using Behavioral Economics to Improve People’s Decisions About Purchasing Health Insurance”. In Hanoch, Yaniv; Barnes, Andrew; Rice, Thomas (eds.). Behavioral Economics and Healthy Behaviors: Key Concepts
and Current Research. Taylor & Francis. ISBN 978-1-317-26952-6.
• Berch, Daniel B.; Geary, David C.; Koepke, Kathleen Mann (2015). Development of Mathematical Cognition: Neural Substrates and Genetic Influences. Academic Press. ISBN 978-0-12-801909-2.
• Bird,
John (2021). Bird’s Engineering Mathematics. Taylor & Francis. ISBN 978-0-367-64378-2.
• Bloch, Ethan D. (2011). The Real Numbers and Real Analysis. Springer Science & Business Media. ISBN 978-0-387-72177-4.
• Bohacek, Peter (2009). “Introduction
to Measurement”. Teaching Quantitative Skills in the Geosciences. Carleton College Science Education Resource Center; American Association of Physics Teachers. Retrieved 2024-03-06.
• Booker, George; Bond, Denise; Sparrow, Len; Swan, Paul (2015).
Teaching Primary Mathematics. Pearson Higher Education AU. ISBN 978-1-4860-0488-1.
• Bradley, Michael J. (2006). The Birth of Mathematics: Ancient Times To 1300. Infobase Publishing. ISBN 978-0-7910-9723-6.
• Brent, Richard P.; Zimmermann, Paul
(2010). Modern Computer Arithmetic. Cambridge University Press. ISBN 978-1-139-49228-7.
• Bronshtein, I. N.; Semendyayev, K. A.; Musiol, Gerhard; Mühlig, Heiner (2015). Handbook of Mathematics. Springer. ISBN 978-3-662-46221-8.
• Brown, David
(2010). “The Measurement of Time and Distance in the Heavens Above Mesopotamia, with Brief Reference Made to Other Ancient Astral Science”. In Morley, Iain; Renfrew, Colin (eds.). The Archaeology of Measurement: Comprehending Heaven, Earth and Time
in Ancient Societies. Cambridge University Press. ISBN 978-0-521-11990-0.
• Bruderer, Herbert (2021). Milestones in Analog and Digital Computing. Springer Nature. ISBN 978-3-030-40974-6.
• Budd, Christopher J.; Sangwin, Christopher (2001). Mathematics
Galore!: Masterclasses, Workshops and Team Projects in Mathematics and Its Applications. OUP Oxford. ISBN 978-0-19-850770-3.
• Bukhshtab, A. A.; Nechaev, V. I. (2014). “Elementary Number Theory”. Encyclopedia of Mathematics. Springer. Retrieved
23 October 2023.
• Bukhshtab, A. A.; Nechaev, V. I. (2016). “Natural Number”. Encyclopedia of Mathematics. Springer. Retrieved 23 October 2023.
• Bukhshtab, A. A.; Pechaev, V. I. (2020). “Arithmetic”. Encyclopedia of Mathematics. Springer. Retrieved
23 October 2023.
• Burgin, Mark (2022). Trilogy Of Numbers And Arithmetic – Book 1: History Of Numbers And Arithmetic: An Information Perspective. World Scientific. ISBN 978-981-12-3685-3.
• Cafaro, Massimo; Epicoco, Italo; Pulimeno, Marco (2018).
“Techniques for Designing Bioinformatics Algorithms”. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics. Elsevier. ISBN 978-0-12-811432-2.
• Cai, Tianxin (2023). A Brief History of Mathematics: A Promenade Through the
Civilizations of Our World. Springer Nature. ISBN 978-3-031-26841-0.
• Campbell, Stephen R. (2012). “Understanding Elementary Number Theory in Relation to Arithmetic and Algebra”. In Zazkis, Rina; Campbell, Stephen R. (eds.). Number Theory in Mathematics
Education: Perspectives and Prospects. Routledge. ISBN 978-1-136-50143-2.
• Campbell-Kelly, Martin; Croarken, Mary; Flood, Raymond; Robson, Eleanor (2007). The History of Mathematical Tables: From Sumer to Spreadsheets. OUP. ISBN 978-0-19-850841-0.
• Caprio,
Michele; Aveni, Andrea; Mukherjee, Sayan (2022). “Concerning Three Classes of Non-Diophantine Arithmetics”. Involve, A Journal of Mathematics. 15 (5): 763–774. arXiv:2102.04197. doi:10.2140/involve.2022.15.763. S2CID 231847291.
• Carraher, David
W.; Schliemann, Analucia D. (2015). “Powerful Ideas in Elementary School Mathematics”. In English, Lyn D.; Kirshner, David (eds.). Handbook of International Research in Mathematics Education. Routledge. ISBN 978-1-134-62664-9.
• Cavanagh, Joseph
(2017). “6. Fixed-Point Multiplication”. Computer Arithmetic and Verilog HDL Fundamentals. CRC Press. ISBN 978-1-351-83411-7.
• Chakraverty, Snehashish; Rout, Saudamini (2022). Affine Arithmetic Based Solution of Uncertain Static and Dynamic Problems.
Springer Nature. ISBN 978-3-031-02424-5.
• Chemla, Karine; Keller, Agathe; Proust, Christine (2023). Cultures of Computation and Quantification in the Ancient World: Numbers, Measurements, and Operations in Documents from Mesopotamia, China and
South Asia. Springer Nature. ISBN 978-3-030-98361-1.
• Cignoni, Gioanni A.; Cossu, Giovanni A. (2016). “The Global Virtual Museum of Information Science & Technology, a Project Idea”. In Tatnall, Arthur; Leslie, Christopher (eds.). International
Communities of Invention and Innovation: IFIP WG 9.7 International Conference on the History of Computing, HC 2016, Brooklyn, NY, USA, May 25-29, 2016, Revised Selected Papers. Springer. ISBN 978-3-319-49463-0.
• Cohen, Joel S. (2003). Computer
Algebra and Symbolic Computation: Mathematical Methods. CRC Press. ISBN 978-1-4398-6370-1.
• Colyvan, Mark (2023). “Indispensability Arguments in the Philosophy of Mathematics”. The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University. Retrieved 20 March 2024.
• Confrey, Jere (1994). “Splitting, Similarity, and Rate of Change: A New Approach to Multiplication and Exponential Functions”. In Harel, Guershon; Confrey, Jere (eds.). The Development of Multiplicative
Reasoning in the Learning of Mathematics. State University of New York Press. ISBN 978-1-4384-0580-3.
• Conradie, Willem; Goranko, Valentin (2015). Logic and Discrete Mathematics: A Concise Introduction. John Wiley & Sons. ISBN 978-1-118-76109-0.
• Cryer,
C. W. (2014). A Math Primer for Engineers. IOS Press. ISBN 978-1-61499-299-8.
• Cunningham, Daniel W. (2016). Set Theory: A First Course. Cambridge University Press. ISBN 978-1-316-68204-3.
• Curley, Robert (2011). Computing: From the Abacus to
the iPad. Britannica Educational Publishing. ISBN 978-1-61530-707-4.
• Cuyt, Annie A. M.; Petersen, Vigdis; Verdonk, Brigitte; Waadeland, Haakon; Jones, William B. (2008). Handbook of Continued Fractions for Special Functions. Springer Science &
Business Media. ISBN 978-1-4020-6949-9.
• Davis, Andrew; Goulding, Maria; Suggate, Jennifer (2017). Mathematical Knowledge for Primary Teachers. Taylor & Francis. ISBN 978-1-317-21901-9.
• De Cruz, Helen; Neth, Hansjörg; Schlimm, Dirk (2010).
“The Cognitive Basis of Arithmetic”. In Löwe, Benedikt; Müller, Thomas (eds.). PhiMSAMP: Philosophy of Mathematics : Sociological Aspsects and Mathematical Practice. College Publications. ISBN 978-1-904987-95-6.
• Dowker, Ann (2019). Individual
Differences in Arithmetic: Implications for Psychology, Neuroscience and Education. Routledge. ISBN 978-1-317-62743-2.
• Dreeben-Irimia, Olga (2010). Patient Education in Rehabilitation. Jones & Bartlett Publishers. ISBN 978-1-4496-1775-2.
• Drosg,
Manfred (2007). Dealing with Uncertainties. Springer. ISBN 978-3-540-29606-5.
• Duffy, Daniel J. (2018). Financial Instrument Pricing Using C++. John Wiley & Sons. ISBN 978-1-119-17048-8.
• Duverney, Daniel (2010). Number Theory: An Elementary
Introduction Through Diophantine Problems. World Scientific. ISBN 978-981-4307-46-8.
• Ebby, Caroline B.; Hulbert, Elizabeth T.; Broadhead, Rachel M. (2020). A Focus on Addition and Subtraction: Bringing Mathematics Education Research to the Classroom.
Routledge. ISBN 978-1-000-22087-2.
• Emerson, Jane; Babtie, Patricia (2014). The Dyscalculia Solution: Teaching Number Sense. Bloomsbury Publishing. ISBN 978-1-4729-2099-7.
• Eriksson, Kenneth; Estep, Donald; Johnson, Claes (2013). Applied Mathematics:
Body and Soul: Volume 2: Integrals and Geometry in IRn. Springer Science & Business Media. ISBN 978-3-662-05798-8.
• Farmer, William M. (2023). Simple Type Theory: A Practical Logic for Expressing and Reasoning About Mathematical Ideas. Springer
Nature. ISBN 978-3-031-21112-6.
• Ferreiros, Jose (2013). Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics. Birkhäuser. ISBN 978-3-0348-5049-0.
• Gallistel, C. R.; Gelman, R. (2005). “Mathematical Cognition”. In
Holyoak, K. J.; Morrison, R. G. (eds.). The Cambridge Handbook of Thinking and Reasoning. Cambridge University Press. ISBN 978-0-521-53101-6.
• Geary, David C. (2006). “Development of Mathematical Understanding”. In Damon, William; Lerner, Richard
M.; Kuhn, Deanna; Siegler, Robert S. (eds.). Handbook of Child Psychology, Cognition, Perception, and Language. John Wiley & Sons. ISBN 978-0-470-05054-5.
• Gellert, W.; Hellwich, M.; Kästner, H.; Küstner, H. (2012). The VNR Concise Encyclopedia
of Mathematics. Springer Science & Business Media. ISBN 978-94-011-6982-0.
• Gerardi, Kristopher; Goette, Lorenz; Meier, Stephan (2013). “Numerical Ability Predicts Mortgage Default”. Proceedings of the National Academy of Sciences. 110 (28): 11267–11271.
Bibcode:2013PNAS..11011267G. doi:10.1073/pnas.1220568110. PMC 3710828. PMID 23798401.
• Goodstein, R. L. (2014). Fundamental Concepts of Mathematics. Elsevier. ISBN 978-1-4831-5405-3.
• Grice, Matt; Kemp, Simon; Morton, Nicola J.; Grace, Randolph
C. (2023). “The Psychological Scaffolding of Arithmetic”. Psychological Review. 131 (2): 494–522. doi:10.1037/rev0000431. PMID 37358523. S2CID 259251163.
• Grigorieva, Ellina (2018). Methods of Solving Number Theory Problems. Birkhäuser. ISBN 978-3-319-90915-8.
• Griffin,
Carroll W. (1935). “Significant Figures”. National Mathematics Magazine. 10 (1): 20–24. doi:10.2307/3028249. JSTOR 3028249.
• Gupta, Rajesh Kumar (2019). Numerical Methods: Fundamentals and Applications. Cambridge University Press. ISBN 978-1-108-68660-0.
• Hafstrom,
John Edward (2013). Basic Concepts in Modern Mathematics. Courier Corporation. ISBN 978-0-486-31627-7.
• Hamilton, Norman T.; Landin, Joseph (2018). Set Theory: The Structure of Arithmetic. Courier Dover Publications. ISBN 978-0-486-83047-6.
• Hart,
Roger (2011). The Chinese Roots of Linear Algebra. JHU Press. ISBN 978-0-8018-9958-4.
• Haylock, Derek; Cockburn, Anne D. (2008). Understanding Mathematics for Young Children: A Guide for Foundation Stage and Lower Primary Teachers. SAGE. ISBN 978-1-4462-0497-9.
• HC
staff (2022). “Numeral”. American Heritage Dictionary. HarperCollins. Retrieved 11 November 2023.
• HC staff (2022a). “Number System”. American Heritage Dictionary. HarperCollins. Retrieved 11 November 2023.
• HC staff (2022b). “Arithmetic”. American
Heritage Dictionary. HarperCollins. Retrieved 19 October 2023.
• Higham, Nicholas (2002). Accuracy and Stability of Numerical Algorithms (PDF) (2nd ed.). SIAM. doi:10.1137/1.9780898718027. ISBN 978-0-89871-521-7.
• Hindry, Marc (2011). Arithmetics.
Universitext. Springer. doi:10.1007/978-1-4471-2131-2. ISBN 978-1-4471-2130-5.
• Hodgkin, Luke (2013). A History of Mathematics: From Mesopotamia to Modernity. OUP Oxford. ISBN 978-0-19-166436-6.
• Hoffman, Joe D.; Frankel, Steven (2018). Numerical
Methods for Engineers and Scientists. CRC Press. ISBN 978-1-4822-7060-0.
• Hofweber, Thomas (2016). “The Philosophy of Arithmetic”. Ontology and the Ambitions of Metaphysics. Oxford University Press. ISBN 978-0-19-876983-5.
• Horsten, Leon (2023).
“Philosophy of Mathematics”. The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Retrieved 22 November 2023.
• Hua, Jueming; Feng, Lisheng (2020). Thirty Great Inventions of China: From Millet Agriculture to Artemisinin.
Springer Nature. ISBN 978-981-15-6525-0.
• Husserl, Edmund; Willard, Dallas (2012). “Translator’s Introduction”. Philosophy of Arithmetic: Psychological and Logical Investigations with Supplementary Texts from 1887–1901. Springer Science & Business
Media. ISBN 978-94-010-0060-4.
• Igarashi, Yoshihide; Altman, Tom; Funada, Mariko; Kamiyama, Barbara (2014). Computing: A Historical and Technical Perspective. CRC Press. ISBN 978-1-4822-2741-3.
• International Organization for Standardization
(2019). ISO 80000-2: 2019 Quantities and units Part 2: Mathematics (PDF). International Organization for Standardization.
• ITL Education Solutions Limited (2011). Introduction to Computer Science. Pearson Education India. ISBN 978-81-317-6030-7.
• Jackson,
Janna M. (2008). “Reading/Writing Connection”. In Flippo, Rona F. (ed.). Handbook of College Reading and Study Strategy Research. Routledge. ISBN 978-1-135-70373-8.
• Jena, Sisir Kumar (2021). C Programming: Learn to Code. CRC Press. ISBN 978-1-000-46056-8.
• Kaiser,
Sarah C.; Granade, Christopher (2021). Learn Quantum Computing with Python and Q#: A Hands-on Approach. Simon and Schuster. ISBN 978-1-61729-613-0.
• Karatsuba, A. A. (2014). “Analytic Number Theory”. Encyclopedia of Mathematics. Springer. Retrieved
23 October 2023.
• Karatsuba, A. A. (2020). “Number Theory”. Encyclopedia of Mathematics. Springer. Retrieved 23 October 2023.
• Kay, Anthony (2021). Number Systems: A Path into Rigorous Mathematics. CRC Press. ISBN 978-0-429-60776-9.
• Khan,
Khalid; Graham, Tony Lee (2018). Engineering Mathematics with Applications to Fire Engineering. CRC Press. ISBN 978-1-351-59761-6.
• Khattar, Dinesh (2010). The Pearson Guide To Objective Arithmetic For Competitive Examinations, 3/E. Pearson Education
India. ISBN 978-81-317-2673-0.
• Khoury, Joseph; Lamothe, Gilles (2016). Mathematics That Power Our World, The: How Is It Made?. World Scientific. ISBN 978-981-4730-86-0.
• Klaf, A. Albert (2011). Trigonometry Refresher. Courier Corporation. ISBN
978-0-486-15104-5.
• Klein, Elise; Moeller, Korbinian; Dressel, Katharina; Domahs, Frank; Wood, Guilherme; Willmes, Klaus; Nuerk, Hans-Christoph (2010). “To Carry or Not to Carry — Is This the Question? Disentangling the Carry Effect in Multi-digit
Addition”. Acta Psychologica. 135 (1): 67–76. doi:10.1016/j.actpsy.2010.06.002. PMID 20580340.
• Klein, Andreas (2013). Stream Ciphers. Springer Science & Business Media. ISBN 978-1-4471-5079-4.
• Klein, Jacob (2013a). Greek Mathematical Thought
and the Origin of Algebra. Courier Corporation. ISBN 978-0-486-31981-0.
• Kleiner, Israel (2012). Excursions in the History of Mathematics. Springer Science & Business Media. ISBN 978-0-8176-8268-2.
• Klose, Orval M. (2014). The Number Systems
and Operations of Arithmetic: An Explanation of the Fundamental Principles of Mathematics Which Underlie the Understanding and Use of Arithmetic, Designed for In-Service Training of Elementary School Teachers Candidates Service Training of Elementary
School Teacher Candidates. Elsevier. ISBN 978-1-4831-3709-4.
• Knobloch, Eberhard; Komatsu, Hikosaburo; Liu, Dun (2013). Seki, Founder of Modern Mathematics in Japan: A Commemoration on His Tercentenary. Springer Science & Business Media. ISBN 978-4-431-54273-5.
• Koepf,
Wolfram (2021). Computer Algebra: An Algorithm-Oriented Introduction. Springer Nature. ISBN 978-3-030-78017-3.
• Koetsier, Teun (2018). The Ascent of GIM, the Global Intelligent Machine: A History of Production and Information Machines. Springer.
ISBN 978-3-319-96547-5.
• Koren, Israel (2018). Computer Arithmetic Algorithms. CRC Press. ISBN 978-1-4398-6371-8.
• Körner, T. W. (2019). Where Do Numbers Come From?. Cambridge University Press. ISBN 978-1-108-77594-6.
• Krenn, Stephan; Lorünser,
Thomas (2023). An Introduction to Secret Sharing: A Systematic Overview and Guide for Protocol Selection. Springer Nature. ISBN 978-3-031-28161-7.
• Kubilyus, I. P. (2018). “Number Theory, Probabilistic Methods in”. Encyclopedia of Mathematics.
Springer. Retrieved 23 October 2023.
• Kudryavtsev, L. D. (2020). “Real Number”. Encyclopedia of Mathematics. Springer. Retrieved 23 October 2023.
• Kupferman, Raz (2015). Elementary School Mathematics For Parents And Teachers – Volume 1. World
Scientific Publishing Company. ISBN 978-981-4699-93-8.
• Křížek, Michal; Somer, Lawrence; Šolcová, Alena (2021). From Great Discoveries in Number Theory to Applications. Springer Nature. ISBN 978-3-030-83899-7.
• Lang, Serge (2002). “Taylor’s
Formula”. Short Calculus: The Original Edition of “A First Course in Calculus”. Undergraduate Texts in Mathematics. Springer. pp. 195–210. doi:10.1007/978-1-4613-0077-9_14. ISBN 978-1-4613-0077-9.
• Lang, Philippa (2015). Science: Antiquity and
its Legacy. Bloomsbury Publishing. ISBN 978-0-85773-955-1.
• Lange, Kenneth (2010). Numerical Analysis for Statisticians. Springer Science & Business Media. ISBN 978-1-4419-5944-7.
• Laski, Elida V.; Jor’dan, Jamilah R.; Daoust, Carolyn; Murray,
Angela K. (2015). “What Makes Mathematics Manipulatives Effective? Lessons From Cognitive Science and Montessori Education”. SAGE Open. 5 (2). doi:10.1177/2158244015589588. hdl:1808/20642. S2CID 11722953.
• Lerner, Brenda Wilmoth; Lerner, K. Lee,
eds. (2008). “Modular Arithmetic”. The Gale Encyclopedia of Science (4th ed.). Thompson Gale. ISBN 978-1-4144-2877-2.
• Li, Yeping; Schoenfeld, Alan H. (2019). “Problematizing Teaching and Learning Mathematics as ‘Given’ in STEM Education”. International
Journal of STEM Education. 6 (1). doi:10.1186/s40594-019-0197-9.
• Liebler, Robert A. (2018). Basic Matrix Algebra with Algorithms and Applications. CRC Press. ISBN 978-0-429-85287-9.
• Lockhart, Paul (2017). Arithmetic. The Belknap Press of Harvard
University Press. ISBN 978-0-674-97223-0.
• Lozano-Robledo, Álvaro (2019). Number Theory and Geometry: An Introduction to Arithmetic Geometry. American Mathematical Soc. ISBN 978-1-4704-5016-8.
• Luderer, Bernd; Nollau, Volker; Vetters, Klaus
(2013). Mathematical Formulas for Economists. Springer Science & Business Media. ISBN 978-3-662-12431-4.
• Lützen, Jesper (2023). A History of Mathematical Impossibility. Oxford University Press. ISBN 978-0-19-286739-1.
• Lustick, David (1997).
“The Numbers Game: Playing up the importance of significant figures and scientific notation”. The Science Teacher. 64 (5): 16–18. JSTOR 24152064.
• Ma, Liping (2020). Knowing and Teaching Elementary Mathematics: Teachers’ Understanding of Fundamental
Mathematics in China and the United States. Routledge. ISBN 978-1-000-02734-1.
• Madden, Daniel J.; Aubrey, Jason A. (2017). An Introduction to Proof Through Real Analysis. John Wiley & Sons. ISBN 978-1-119-31472-1.
• Mahajan, Sanjoy (2010). Street-Fighting
Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving. MIT Press. ISBN 978-0-262-26559-1.
• Marcus, Russell; McEvoy, Mark (2016). An Historical Introduction to the Philosophy of Mathematics: A Reader. Bloomsbury Publishing.
ISBN 978-1-4725-3291-6.
• Mazumder, Pinaki; Ebong, Idongesit E. (2023). Lectures on Digital Design Principles. CRC Press. ISBN 978-1-000-92194-6.
• Mazzola, Guerino; Milmeister, Gérard; Weissmann, Jody (2004). Comprehensive Mathematics For Computer
Scientists 1: Sets And Numbers, Graphs And Algebra, Logic And Machines, Linear Geometry. Springer Science & Business Media. ISBN 978-3-540-20835-8.
• Meyer, Carl D. (2023). Matrix Analysis and Applied Linear Algebra: Second Edition. SIAM. ISBN 978-1-61197-744-8.
• Monahan,
John F. (2012). “2. Basic Computational Algorithms”. In Gentle, James E.; Härdle, Wolfgang Karl; Mori, Yuichi (eds.). Handbook of Computational Statistics: Concepts and Methods. Springer Science & Business Media. ISBN 978-3-642-21551-3.
• Moncayo,
Raul (2018). Lalangue, Sinthome, Jouissance, and Nomination: A Reading Companion and Commentary on Lacan’s Seminar XXIII on the Sinthome. Routledge. ISBN 978-0-429-91554-3.
• Mooney, Claire; Briggs, Mary; Hansen, Alice; McCullouch, Judith; Fletcher,
Mike (2014). Primary Mathematics: Teaching Theory and Practice. Learning Matters. ISBN 978-1-4739-0707-2.
• Moore, Ramon E.; Kearfott, R. Baker; Cloud, Michael J. (2009). Introduction to Interval Analysis. SIAM. ISBN 978-0-89871-669-6.
• Muller,
Jean-Michel; Brisebarre, Nicolas; Dinechin, Florent de; Jeannerod, Claude-Pierre; Lefèvre, Vincent; Melquiond, Guillaume; Revol, Nathalie; Stehlé, Damien; Torres, Serge (2009). Handbook of Floating-Point Arithmetic. Springer Science & Business Media.
ISBN 978-0-8176-4705-6.
• Muller, Jean-Michel; Brunie, Nicolas; Dinechin, Florent de; Jeannerod, Claude-Pierre; Joldes, Mioara; Lefèvre, Vincent; Melquiond, Guillaume; Revol, Nathalie; Torres, Serge (2018). Handbook of Floating-Point Arithmetic.
Birkhäuser. ISBN 978-3-319-76526-6.
• Musser, Gary L.; Peterson, Blake E.; Burger, William F. (2013). Mathematics for Elementary Teachers: A Contemporary Approach. John Wiley & Sons. ISBN 978-1-118-48700-6.
• MW staff (2023). “Definition of Arithmetic”.
www.merriam-webster.com. Retrieved 19 October 2023.
• Nagel, Rob (2002). U-X-L Encyclopedia of Science. U-X-L. ISBN 978-0-7876-5440-5.
• Nagel, Ernest; Newman, James Roy (2008). Godel’s Proof. NYU Press. ISBN 978-0-8147-5837-3.
• Nakov, Svetlin;
Kolev, Veselin (2013). Fundamentals of Computer Programming with C#: The Bulgarian C# Book. Faber Publishing. ISBN 978-954-400-773-7.
• NCTM Staff. “Number and Operations”. www.nctm.org. National Council of Teachers of Mathematics. Retrieved 21
November 2023.
• Nelson, Gerald (2019). English: An Essential Grammar. Routledge. ISBN 978-1-351-12273-3.
• Null, Linda; Lobur, Julia (2006). The Essentials of Computer Organization and Architecture. Jones & Bartlett Learning. ISBN 978-0-7637-3769-6.
• Nurnberger-Haag,
Julie (2017). “Borrow, Trade, Regroup, or Unpack? Revealing How Instructional Metaphors Portray Base-Ten Number”. In Jao, Limin; Radakovic, Nenad (eds.). Transdisciplinarity in Mathematics Education: Blurring Disciplinary Boundaries. Springer. ISBN
978-3-319-63624-5.
• O’Leary, Michael L. (2015). A First Course in Mathematical Logic and Set Theory. John Wiley & Sons. ISBN 978-0-470-90588-3.
• O’Regan, Gerard (2012). A Brief History of Computing. Springer Science & Business Media. ISBN
978-1-4471-2359-0.
• Oakes, Elizabeth (2020). Encyclopedia of World Scientists, Updated Edition. Infobase Publishing. ISBN 978-1-4381-9545-2.
• Odom, Samuel L.; Barbarin, Oscar A.; Wasik, Barbara Hanna (2009). “Applying Lessons from Developmental
Science to Early Education”. In Barbarin, Oscar A.; Wasik, Barbara Hanna (eds.). Handbook of Child Development and Early Education: Research to Practice. Guilford Press. ISBN 978-1-60623-302-3.
• Oliver, Alexander D. (2005). “Arithmetic, Foundations
of”. In Honderich, Ted (ed.). The Oxford Companion to Philosophy. Oxford University Press. ISBN 978-0-19-926479-7.
• Omondi, Amos R. (2020). Cryptography Arithmetic: Algorithms and Hardware Architectures. Springer Nature. ISBN 978-3-030-34142-8.
• Ongley,
John; Carey, Rosalind (2013). Russell: A Guide for the Perplexed. Bloomsbury Publishing. ISBN 978-1-4411-9123-6.
• Ore, Oystein (1948). Number Theory and Its History. McGraw-Hill. ISBN 978-0-486-65620-5. OCLC 1397541.
• Orr, David B. (1995). Fundamentals
of Applied Statistics and Surveys. CRC Press. ISBN 978-0-412-98821-9.
• Otis, Jessica Marie (2024). By the Numbers: Numeracy, Religion, and the Quantitative Transformation of Early Modern England. Oxford University Press. ISBN 978-0-19-760877-7.
• Paar,
Christof; Pelzl, Jan (2009). Understanding Cryptography: A Textbook for Students and Practitioners. Springer Science & Business Media. ISBN 978-3-642-04101-3.
• Page, Robert L. (2003). “Number Theory, Elementary”. Encyclopedia of Physical Science
and Technology (Third ed.). Academic Press. ISBN 978-0-12-227410-7.
• Payne, Andrew (2017). The Teleology of Action in Plato’s Republic. Oxford University Press. ISBN 978-0-19-879902-3.
• Peirce, Charles S. (2015). Arithmetic. Walter de Gruyter
GmbH & Co KG. ISBN 978-3-11-086970-5.
• Pharr, Matt; Jakob, Wenzel; Humphreys, Greg (2023). Physically Based Rendering: From Theory to Implementation (4 ed.). MIT Press. ISBN 978-0-262-37403-3.
• Pomerance, Carl (2010). “IV.3 Computational Number
Theory” (PDF). In Gowers, Timothy; Barrow-Green, June; Leader, Imre (eds.). The Princeton Companion to Mathematics. Princeton University Press. pp. 348–362. ISBN 978-1-4008-3039-8.
• Pomerance, C.; Sárközy, A. (1995). “Combinatorial Number Theory”.
In Graham, R. L. (ed.). Handbook of Combinatorics. Elsevier. ISBN 978-0-08-093384-9.
• Ponticorvo, Michela; Schmbri, Massimiliano; Miglino, Orazio (2019). “How to Improve Spatial and Numerical Cognition with a Game-Based and Technology-Enhanced
Learning Approach”. In Vicente, José Manuel Ferrández; Álvarez-Sánchez, José Ramón; López, Félix de la Paz; Moreo, Javier Toledo; Adeli, Hojjat (eds.). Understanding the Brain Function and Emotions: 8th International Work-Conference on the Interplay
Between Natural and Artificial Computation, IWINAC 2019, Almería, Spain, June 3–7, 2019, Proceedings, Part I. Springer. ISBN 978-3-030-19591-5.
• Prata, Stephen (2002). C Primer Plus. Sams Publishing. ISBN 978-0-672-32222-8.
• Quintero, Ana Helvia;
Rosario, Hector (2016). Math Makes Sense!: A Constructivist Approach To The Teaching And Learning Of Mathematics. World Scientific. ISBN 978-1-78326-866-5.
• Rajan, Hridesh (2022). An Experiential Introduction to Principles of Programming Languages.
MIT Press. ISBN 978-0-262-36243-6.
• Reilly, Norman R. (2009). Introduction to Applied Algebraic Systems. Oxford University Press. ISBN 978-0-19-970992-2.
• Reitano, Robert R. (2010). Introduction to Quantitative Finance: A Math Tool Kit. MIT
Press. ISBN 978-0-262-01369-7.
• Resnick, L. B.; Ford, W. W. (2012). Psychology of Mathematics for Instruction. Routledge. ISBN 978-1-136-55759-0.
• Reynolds, Barbara E. (2008). “Abacus”. In Selin, Helaine (ed.). Encyclopaedia of the History of
Science, Technology, and Medicine in Non-Western Cultures. Springer Science & Business Media. ISBN 978-1-4020-4559-2.
• Riesel, Hans (2012). Prime Numbers and Computer Methods for Factorization. Springer Science & Business Media. ISBN 978-1-4612-0251-6.
• Rising,
Gerald R.; Matthews, James R.; Schoaff, Eileen; Matthew, Judith (2021). About Mathematics. Linus Learning. ISBN 978-1-60797-892-3.
• Robbins, Neville (2006). Beginning Number Theory. Jones & Bartlett Learning. ISBN 978-0-7637-3768-9.
• Rodda,
Harvey J. E.; Little, Max A. (2015). Understanding Mathematical and Statistical Techniques in Hydrology: An Examples-based Approach. John Wiley & Sons. ISBN 978-1-119-07659-9.
• Roe, John; deForest, Russ; Jamshidi, Sara (2018). Mathematics for Sustainability.
Springer. ISBN 978-3-319-76660-7.
• Romanowski, Perry (2008). “Arithmetic”. In Lerner, Brenda Wilmoth; Lerner, K. Lee (eds.). The Gale Encyclopedia of Science (4th ed.). Thompson Gale. ISBN 978-1-4144-2877-2.
• Rooney, Anne (2021). Think Like
a Mathematician. The Rosen Publishing Group. ISBN 978-1-4994-7092-5.
• Rossi, Richard J. (2011). Theorems, Corollaries, Lemmas, and Methods of Proof. John Wiley & Sons. ISBN 978-1-118-03057-8.
• Ruthven, Kenneth (2012). “12. Calculators in the
Mathematics Curriculum: The Scope of Personal Computational Technology”. In Bishop, Alan; Clements, M. A. (Ken); Keitel-Kreidt, Christine; Kilpatrick, Jeremy; Laborde, Colette (eds.). International Handbook of Mathematics Education. Springer Science
& Business Media. ISBN 978-94-009-1465-0.
• Sally, Judith D.; Sally (Jr.), Paul J. (2012). Integers, Fractions, and Arithmetic: A Guide for Teachers. American Mathematical Soc. ISBN 978-0-8218-8798-1.
• Seaman, William; Rossler, Otto E.; Burgin,
Mark (2023). Chaos, Information, And The Future Of Physics: The Seaman-rossler Dialogue With Information Perspectives By Burgin And Seaman. World Scientific. ISBN 978-981-12-7138-0.
• Shiva, Sajjan G. (2018). Introduction to Logic Design. CRC Press.
ISBN 978-1-351-98983-1.
• Sierpinska, Anna; Lerman, Stephen (1996). “Epistemologies of Mathematics and of Mathematics Education”. In Alan J. Bishop; Ken Clements; Christine Keitel; Jeremy Kilpatrick; Colette Laborde (eds.). International Handbook
of Mathematics Education: Part 1. Kluwer International Handbooks of Education, vol. 4. Springer Netherlands. pp. 827–876. doi:10.1007/978-94-009-1465-0_23. ISBN 978-94-009-1465-0.
• Smith, David E. (1958). History of Mathematics. Courier Corporation.
ISBN 978-0-486-20430-7.
• Smyth, William (1864). Elementary Algebra: For Schools and Academies. Bailey and Noyes. OCLC 3901163143.
• Sophian, Catherine (2017). The Origins of Mathematical Knowledge in Childhood. Routledge. ISBN 978-1-351-54175-6.
• Sperling,
Abraham; Stuart, Monroe (1981). Mathematics. Elsevier Science. ISBN 978-0-7506-0405-5.
• Stakhov, Alexey (2020). Mathematics Of Harmony As A New Interdisciplinary Direction And ‘Golden’ Paradigm Of Modern Science – Volume 2: Algorithmic Measurement
Theory, Fibonacci And Golden Arithmetic’s And Ternary Mirror-symmetrical Arithmetic. World Scientific. ISBN 978-981-12-1348-9.
• Sternberg, Robert J.; Ben-Zeev, Talia (2012). The Nature of Mathematical Thinking. Routledge. ISBN 978-1-136-48750-7.
• Stevenson,
Angus; Waite, Maurice (2011). Concise Oxford English Dictionary: Luxury Edition. OUP Oxford. ISBN 978-0-19-960111-0.
• Stewart, David E. (2022). Numerical Analysis: A Graduate Course. Springer Nature. ISBN 978-3-031-08121-7.
• Strathern, Paul
(2012). Turing And The Computer. Random House. ISBN 978-1-4481-0656-1.
• Swanson, Irena (2021). Introduction To Analysis With Complex Numbers. World Scientific. ISBN 978-981-12-2587-1.
• Swartzlander, Earl E. (2017). “High-Speed Computer Arithmetic”.
In Oklobdzija, Vojin G. (ed.). Digital Design and Fabrication. CRC Press. ISBN 978-0-8493-8604-6.
• Tarasov, Vasily (2008). Quantum Mechanics of Non-Hamiltonian and Dissipative Systems. Elsevier. ISBN 978-0-08-055971-1.
• Taylor, Joseph L. (2012).
Foundations of Analysis. American Mathematical Soc. ISBN 978-0-8218-8984-8.
• Thiam, Thierno; Rochon, Gilbert (2019). Sustainability, Emerging Technologies, and Pan-Africanism. Springer Nature. ISBN 978-3-030-22180-5.
• Tiles, Mary (2009). “A
Kantian Perspective on Photo credit: https://www.flickr.com/photos/calliope/107693873/’]