crispr gene editing

 

  • [119] The efficiency of Cas9-endonuclease and the ease by which genes can be targeted led to the development of CRISPR-knockout (KO) libraries both for mouse and human cells,
    which can cover either specific gene sets of interest or the whole-genome.

  • CRISPRs are much easier to design because the process requires synthesizing only a short RNA sequence, a procedure that is already widely used for many other molecular biology
    techniques (e.g.

  • [86][87] Research has also been conducted in engineering new Cas9 proteins, including some that partially replace RNA nucleotides in crRNA with DNA and a structure-guided
    Cas9 mutant generating procedure that all had reduced off-target effects.

  • Spatiotemporal control is a form of removing off-target effects—only certain cells or parts of the organism may need to be modified, and thus light or small molecules can
    be used as a way to conduct this.

  • [12] History Other methods[edit] In the early 2000s, German researchers began developing zinc finger nucleases (ZFNs), synthetic proteins whose DNA-binding domains enable
    them to create double-stranded breaks in DNA at specific points.

  • [151] These CRISPR-generated cellular models, with isogenic controls, provide a new way to study human disease and test drugs.

  • The repair template is also uniquely designed for each application, as it must complement to some degree the DNA sequences on either side of the cut and also contain whatever
    sequence is desired for insertion into the host genome.

  • [127] The ability of Cas9 to be introduced in vivo allows for the creation of more accurate models of gene function and mutation effects, all while avoiding the off-target
    mutations typically observed with older methods of genetic engineering.

  • By delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell, the cell’s genome can be cut at a desired location, allowing existing genes to be
    removed and/or new ones added in vivo.

  • [8] The ease with which researchers can insert Cas9 and template RNA in order to silence or cause point mutations at specific loci has proved invaluable to the quick and efficient
    mapping of genomic models and biological processes associated with various genes in a variety of eukaryotes.

  • [122] It is important to deliver thousands of unique sgRNAs-containing vectors to a single vessel of cells by viral transduction at low multiplicity of infection (MOI, typically
    at 0.1-0.6), it prevents the probability that an individual cell clone will get more than one type of sgRNA otherwise it can lead to incorrect assignment of genotype to phenotype.

  • [172] Cancer[edit] CRISPR has also found many applications in developing cell-based immunotherapies.

  • [168][169] Nevertheless, there remains a few limitations of the technology’s use in gene therapy: the relatively high frequency of off-target effect, the requirement for a
    PAM sequence near the target site, p53 mediated apoptosis by CRISPR-induced double-strand breaks and immunogenic toxicity due to the delivery system typically by virus.

  • [129] Concerns have been raised that off-target effects (editing of genes besides the ones intended) may confound the results of a CRISPR gene editing experiment (i.e.

  • [120] Apart from knock-out there are also knock-down (CRISPRi) and activation (CRISPRa) libraries, which using the ability of proteolytically deactivated Cas9-fusion proteins
    (dCas9) to bind target DNA, which means that gene of interest is not cut but is over-expressed or repressed.

  • [128] CRISPR-Cas9 can be used to edit the DNA of organisms in vivo and to eliminate individual genes or even entire chromosomes from an organism at any point in its development.

  • Cas9 can be easily introduced into the target cells along with sgRNA via plasmid transfection in order to model the spread of diseases and the cell’s response to and defense
    against infection.

  • Specificity is an important aspect to improve the CRISPR-Cas9 system because the off-target effects it generates have serious consequences for the genome of the cell and invokes
    caution for its use.

  • [166] CRISPR may also have applications in tissue engineering and regenerative medicine, such as by creating human blood vessels that lack expression of MHC class II proteins,
    which often cause transplant rejection.

  • Knock-out libraries are created in a way to achieve equal representation and performance across all expressed gRNAs and carry an antibiotic or fluorescent selection marker
    that can be used to recover transduced cells.

  • [5][6][7] Working like genetic scissors, the Cas9 nuclease opens both strands of the targeted sequence of DNA to introduce the modification by one of two methods.

  • CRISPR may be used at the germline level to create organisms in which the targeted gene is changed everywhere (i.e.

  • The crRNA is uniquely designed for each application, as this is the sequence that Cas9 uses to identify and directly bind to specific sequences within the host cell’s DNA.

  • [84][85] Since the host’s replication machinery is not needed to produce these proteins, the chance of the recognizing sequence of the sgRNA is almost none, decreasing the
    chance of off-target effects.

  • [154] In 2016, the United States Food and Drug Administration (FDA) approved a clinical trial in which CRISPR would be used to alter T cells extracted from people with different
    kinds of cancer and then administer those engineered T cells back to the same people.

  • Once incorporated, this new sequence is now part of the cell’s genetic material and passes into its daughter cells.

  • One issue with this approach is that it requires the removal of the HIV genome from almost all cells, which can be difficult to realistically achieve.

  • [55] Once these sequences have been assembled into a plasmid and transfected into cells, the Cas9 protein with the help of the crRNA finds the correct sequence in the host
    cell’s DNA and – depending on the Cas9 variant – creates a single- or double-stranded break at the appropriate location in the DNA.

  • [120][121] CRISPR screening helps scientist to create a systematic and high-throughput genetic perturbation within live model organisms.

  • While genome editing in eukaryotic cells has been possible using various methods since the 1980s, the methods employed had proved to be inefficient and impractical to implement
    on a large scale.

  • [92][93] Several variants of CRISPR-Cas9 allow gene activation or genome editing with an external trigger such as light or small molecules.

  • [14] CRISPR can also target several DNA sites simultaneously simply by introducing different gRNAs.

  • [55] The goal is for the cell’s native HDR process to utilize the provided repair template and thereby incorporate the new sequence into the genome.

  • [79][80][81] Efficiency of CRISPR-Cas9 has been found to greatly increase when various components of the system including the entire CRISPR/Cas9 structure to Cas9-gRNA complexes
    delivered in assembled form rather than using transgenics.

  • Electroporation of DNA, RNA, or ribonucleocomplexes is a common technique, though it can result in harmful effects on the target cells.

  • Therefore, genomic engineering by CRISPR-Cas9 gives researchers the ability to generate targeted random gene disruption.

  • Efficiency of the CRISPR-Cas9 system is also greatly increased by proper delivery of the DNA instructions for creating the proteins and necessary reagents.

  • [90][91] Computational methods including machine learning have been used to predict the affinity of and create unique sequences for the system to maximize specificity for
    given targets.

  • Delivery[edit] See also: Transfection Delivery of Cas9, sgRNA, and associated complexes into cells can occur via viral and non-viral systems.

  • Both zinc finger nucleases and TALENs require the design and creation of a custom protein for each targeted DNA sequence, which is a much more difficult and time-consuming
    process than that of designing guide RNAs.

  • Biomedicine[edit] CRISPR-Cas technology has been proposed as a treatment for multiple human diseases, especially those with a genetic cause.

  • However, its use in human germline genetic modification is highly controversial.

  • [39][5] In June 2021, the first, small clinical trial of intravenous CRISPR gene editing in humans concludes with promising results.

  • [107][108] Small molecules can also be used to improve homology directed repair,[109] often by inhibiting the non-homologous end joining pathway.

  • [152] Its ability to modify specific DNA sequences makes it a tool with potential to fix disease-causing mutations.

  • [124][125][126] Applications Disease models[edit] Cas9 genomic modification has allowed for the quick and efficient generation of transgenic models within the field of genetics.

  • Cas9 is an accurate method of treating diseases due to the targeting of the Cas9 enzyme only affecting certain cell types.

  • These include using a different variants or novel creations of the Cas protein, using an altogether different effector protein, modifying the sgRNA, or using an algorithmic
    approach to identify existing optimal solutions.

  • It made CRISPR/Cas9 system even more interesting in gene editing.

  • Novel variations of Cas9 proteins that increase specificity include effector proteins with comparable efficiency and specificity to the original SpCas9 that are able to target
    the previously untargetable sequences and a variant that has virtually no off-target mutations.

  • However, this is ultimately not too limiting, as it is typically a very short and nonspecific sequence that occurs frequently at many places throughout the genome (e.g.

  • These cells are sourced from healthy donors and are edited to attack cancer cells and avoid being seen as a threat by the recipient’s immune system, and then multiplied into
    huge batches which can be given to large numbers of recipients.

  • This technology thus represents a novel form of antimicrobial therapy and a strategy by which to manipulate bacterial populations.

  • While effective treatments exist which can allow patients to live healthy lives, HIV is retroactive meaning that it embeds an inactive version of itself in the human genome.

  • [57][58] Overview of the transfection and DNA cleaving by CRISPR-Cas9 (crRNA and tracrRNA are often joined as a single strand of RNA when designing a plasmid)[55] Structure[edit]
    CRISPR-Cas9 offers a high degree of fidelity and relatively simple construction.

  • [144][145][146] CRISPR can be utilized to create human cellular models of disease.

  • CRISPR is used to edit the cells in order to reduce the chance the patient’s body will reject the transplant.

  • Cas9 derived from the bacterial species Streptococcus pyogenes has facilitated targeted genomic modification in eukaryotic cells by allowing for a reliable method of creating
    a targeted break at a specific location as designated by the crRNA and tracrRNA guide strands.

  • [78] Controlled genome editing[edit] Further improvements and variants of the CRISPR-Cas9 system have focused on introducing more control into its use.

  • Orthogonal CRISPR experiments are often recommended to confirm the results of a gene editing experiment.

  • HDR employs the use of similar DNA sequences to drive the repair of the break via the incorporation of exogenous DNA to function as the repair template.

  • These end-joining pathways can often result in random deletions or insertions at the repair site, which may disrupt or alter gene functionality.

  • [111] CRISPR also utilizes single base-pair editing proteins to create specific edits at one or two bases in the target sequence.

  • [167] In addition, clinical trials to cure beta thalassemia and sickle cell disease in human patients using CRISPR-Cas9 technology have shown promising results.

  • in all cells/tissues/organs of a multicellular organism), or it may be used in non-germline cells to create local changes that only affect certain cell populations within
    the organism.

  • [9] CRISPR-Cas9 genome editing techniques have many potential applications, including in medicine and agriculture.

  • The cells undergoing the Cas9 therapy can also be removed and reintroduced to provide amplified effects of the therapy.

 

Works Cited

[‘Bak RO, Gomez-Ospina N, Porteus MH (August 2018). “Gene Editing on Center Stage”. Trends in Genetics. 34 (8): 600–611. doi:10.1016/j.tig.2018.05.004. PMID 29908711. S2CID 49269023.
2. ^ “The Nobel Prize in Chemistry 2020”. The Nobel Prize. Retrieved
2020-12-10.
3. ^ Cohen J (October 7, 2020). “CRISPR, the revolutionary genetic “scissors,” honored by Chemistry Nobel”. Science. doi:10.1126/science.abf0540. S2CID 225116732.
4. ^ Cohen J (2018-06-04). “With prestigious prize, an overshadowed
CRISPR researcher wins the spotlight”. Science | AAAS. Retrieved 2020-05-02.
5. ^ Jump up to:a b Owens R (8 October 2020). “Nobel prize: who gets left out?”. The Conversation. Retrieved 13 December 2021.
6. ^ “Lithuanian scientists not awarded
Nobel prize despite discovering same technology”. LRT.LT. 8 October 2020.
7. ^ Šikšnys V (2018-06-16). “Imam genų žirkles, iškerpam klaidą, ligos nelieka”. Laisvės TV / Freedom TV. 12:22 minutes in. LaisvėsTV.
<…>Tai mes tą savo straipsnį išsiuntėm į redakciją pirmieji, bet laimės ten daug nebuvo. Viena redakcija pasakė, kad mes net recenzentam nesiųsim. Nusiuntėm į kitą redakciją – tai jis (straipsnis) pragulėjo kažkur ant redaktoriaus stalo labai ilgai.
Na ir taip galų gale išsiuntėm į trečią žurnalą ir trečias žurnalas po kelių mėnesių jį išspausdino. Bet, aišku, Berklio universiteto mokslininkams sekėsi geriau – jie išsiuntė straipsnį į žurnalą Science – jį priėmė ir išspausdino per 2 savaites.
Nors iš tikro jie tą straispnį išsiuntė pora mėnesių vėliau nei mes. Retrieved 2018-06-30.
<…> Well, we were who had sent the article first, but had not much of luck.
8. ^ Zhang JH, Pandey M, Kahler JF, Loshakov A, Harris B, Dagur PK, et al. (November 2014). “Improving the specificity and efficacy of CRISPR/CAS9 and gRNA through target
specific DNA reporter”. Journal of Biotechnology. 189: 1–8. doi:10.1016/j.jbiotec.2014.08.033. PMC 4252756. PMID 25193712.
9. ^ Vakulskas CA, Dever DP, Rettig GR, Turk R, Jacobi AM, Collingwood MA, et al. (August 2018). “A high-fidelity
Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells”. Nature Medicine. 24 (8): 1216–1224. doi:10.1038/s41591-018-0137-0. PMC 6107069. PMID 30082871.
10. ^ Jump
up to:a b c Ledford H (March 2016). “CRISPR: gene editing is just the beginning”. Nature. 531 (7593): 156–159. Bibcode:2016Natur.531..156L. doi:10.1038/531156a. PMID 26961639.
11. ^ Travis J (17 December 2015). “Breakthrough of the Year:
CRISPR makes the cut”. Science Magazine. American Association for the Advancement of Science.
12. ^ Ledford H (June 2015). “CRISPR, the disruptor”. Nature. 522 (7554): 20–24. Bibcode:2015Natur.522…20L. doi:10.1038/522020a. PMID 26040877.
13. ^
Young S (11 February 2014). “CRISPR and Other Genome Editing Tools Boost Medical Research and Gene Therapy’s Reach”. MIT Technology Review. Retrieved 2014-04-13.
14. ^ Jump up to:a b Heidenreich M, Zhang F (January 2016). “Applications
of CRISPR-Cas systems in neuroscience”. Nature Reviews. Neuroscience. 17 (1): 36–44. doi:10.1038/nrn.2015.2. PMC 4899966. PMID 26656253.
15. ^ Barrangou R, Doudna JA (September 2016). “Applications of CRISPR technologies in research and
beyond”. Nature Biotechnology. 34 (9): 933–941. doi:10.1038/nbt.3659. PMID 27606440. S2CID 21543486.
16. ^ Cox DB, Platt RJ, Zhang F (February 2015). “Therapeutic genome editing: prospects and challenges”. Nature Medicine. 21 (2): 121–131.
doi:10.1038/nm.3793. PMC 4492683. PMID 25654603.
17. ^ Pollack A (May 11, 2015). “Jennifer Doudna, a Pioneer Who Helped Simplify Genome Editing”. New York Times. Retrieved October 8, 2020.
18. ^ Jinek M, Chylinski K, Fonfara I, Hauer M,
Doudna JA, Charpentier E (August 2012). “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity”. Science. 337 (6096): 816–821. doi:10.1126/science.1225829. PMC 6286148. PMID 22745249.
19. ^ “CRISPR Madness”. GEN.
2013-11-08.
20. ^ Staff (1 April 2015). “News: Products & Services”. Genetic Engineering & Biotechnology News (Paper). 35 (7): 8. doi:10.1089/gen.35.21.05.
21. ^ “Who Owns the Biggest Biotech Discovery of the Century? There’s a bitter
fight over the patents for CRISPR, a breakthrough new form of DNA editing”. MIT Technology Review. Retrieved 25 February 2015.
22. ^ Fye S. “Genetic Rough Draft: Editas and CRISPR”. The Atlas Business Journal. Retrieved 19 January 2016.
23. ^
“CRISPR-Cas systems and methods for altering expression of gene products”. Google Patents.
24. ^ Shaffer C (April 2022). “Broad defeats Berkeley CRISPR patent”. Nature Biotechnology. 40 (4): 445. doi:10.1038/d41587-022-00004-2. PMID 35288688.
S2CID 247453528.
25. ^ “CRISPR patents to go on trial”. Nature Biotechnology. 34 (2): 121. February 2016. doi:10.1038/nbt0216-121a. PMID 26849500. S2CID 205265912.
26. ^ Pollack A (15 February 2017). “Harvard and M.I.T. Scientists Win
Gene-Editing Patent Fight”. The New York Times.
27. ^ Akst J (February 15, 2017). “Broad Wins CRISPR Patent Interference Case”. The Scientist Magazine.
28. ^ Noonan KE (February 16, 2017). “PTAB Decides CRISPR Interference in Favor of
Broad Institute — Their Reasoning”. Patent Docs.
29. ^ Potenza A (April 13, 2017). “UC Berkeley challenges decision that CRISPR patents belong to Broad Institute”. The Verge. Retrieved 22 September 2017.
30. ^ Buhr S (July 26, 2017).
“The CRISPR patent battle is back on as UC Berkeley files an appeal”. TechCrunch. Retrieved 22 September 2017.
31. ^ Westman N (March 1, 2022). “UC Berkeley loses CRISPR patent case”. The Verge. Retrieved March 6, 2022.
32. ^ Jump up to:a
b Philippidis A (August 7, 2017). “MilliporeSigma to Be Granted European Patent for CRISPR Technology”. Genetic Engineering & Biotechology News. Retrieved 22 September 2017.
33. ^ Akst J (March 24, 2017). “UC Berkeley Receives CRISPR Patent
in Europe”. The Scientist. Retrieved 22 September 2017.
34. ^ Cohen J (4 August 2017). “CRISPR patent battle in Europe takes a ‘wild’ twist with surprising player”. Science. doi:10.1126/science.aan7211.
35. ^ “Top EU court: GMO rules
cover plant gene editing technique”. Retuers. 25 July 2018.
36. ^ AFP (7 February 2020). “US Trial Shows 3 Cancer Patients Had Their Genomes Altered Safely by CRISPR”. ScienceAlert. Retrieved 2020-02-09.
37. ^ Chamary JV. “These Scientists
Deserved A Nobel Prize, But Didn’t Discover Crispr”. Forbes. Retrieved 2020-07-10.
38. ^ Fischman J. “Nobel Prize in Chemistry Goes to Discovery of ‘Genetic Scissors’ Called CRISPR/Cas9”. Scientific American. Retrieved 2021-03-24.
39. ^
“Two women share chemistry Nobel in historic win for ‘genetic scissors'”. BBC News. 2020-10-07. Retrieved 2020-12-06.
40. ^ Kaiser J (26 June 2021). “CRISPR injected into the blood treats a genetic disease for first time”. Science | AAAS.
Retrieved 11 July 2021.
41. ^ Jump up to:a b Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. (August 2021). “CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis”. The New England Journal of Medicine. 385 (6):
493–502. doi:10.1056/NEJMoa2107454. PMID 34215024. S2CID 235722446.
42. ^ Boonstra E, de Kleijn R, Colzato LS, Alkemade A, Forstmann BU, Nieuwenhuis S (6 October 2015). “Neurotransmitters as food supplements: the effects of GABA on brain
and behavior”. Frontiers in Psychology. 6: 1520. doi:10.3389/fpsyg.2015.01520. PMC 4594160. PMID 26500584.
43. ^ “Tomato In Japan Is First CRISPR-Edited Food In The World To Go On Sale”. IFLScience. Retrieved 18 October 2021.
44. ^ Wang
T, Zhang H, Zhu H (15 June 2019). “CRISPR technology is revolutionizing the improvement of tomato and other fruit crops”. Horticulture Research. 6 (1): 77. doi:10.1038/s41438-019-0159-x. PMC 6570646. PMID 31240102.
45. ^ “Japan embraces
CRISPR-edited fish”. Nature Biotechnology. 40 (1): 10. January 2022. doi:10.1038/s41587-021-01197-8. PMID 34969964. S2CID 245593283.
46. ^ “Startup hopes genome-edited pufferfish will be a hit in 2022”. The Japan Times. 5 January 2022. Retrieved
17 January 2022.
47. ^ “Gene-edited sea bream set for sale in Japan”. thefishsite.com.
48. ^ Götz L, Svanidze M, Tissier A, Brand A (January 2022). “Consumers’ Willingness to Buy CRISPR Gene-Edited Tomatoes: Evidence from a Choice Experiment
Case Study in Germany”. Sustainability. 14 (2): 971. doi:10.3390/su14020971.
49. ^ “Are Consumers Willing to Buy CRISPR Tomatoes?”. Crop Biotech Update. Retrieved 2022-02-21.
50. ^ Whitford E (2021-05-28). “UC Berkeley Will Auction NFTs
for 2 Nobel Prize Patents”. Inside Higher Ed. Retrieved 2023-02-21.
51. ^ Sestino A, Guido G, Peluso AM (2022). Non-Fungible Tokens (NFTs). Examining the Impact on Consumers and Marketing Strategies. p. 28. doi:10.1007/978-3-031-07203-1.
ISBN 978-3-031-07202-4. S2CID 250238540.
52. ^ Chang K (2021-05-27). “You Can Buy a Piece of a Nobel Prize-Winning Discovery”. New York Times. Retrieved 2023-02-21.
53. ^ Trautman LJ (2022). “Virtual Art and Non-Fungible Tokens”. Hofstra
Law Review. 50 (361): 369 f. doi:10.2139/ssrn.3814087. S2CID 234830426.
54. ^ Jones N (2021-06-18). “How scientists are embracing NFTs”. Nature. 594 (7864): 482. doi:10.1038/d41586-021-01642-3. PMID 34145410. S2CID 235481285.
55. ^ Jump
up to:a b c d e Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (November 2013). “Genome engineering using the CRISPR-Cas9 system”. Nature Protocols. 8 (11): 2281–2308. doi:10.1038/nprot.2013.143. hdl:1721.1/102943. PMC 3969860. PMID
24157548.
56. ^ Ly J (2013). Discovering Genes Responsible for Kidney Diseases (Ph.D.). University of Toronto. Retrieved 26 December 2016.
57. ^ Mohr SE, Hu Y, Ewen-Campen B, Housden BE, Viswanatha R, Perrimon N (September 2016). “CRISPR
guide RNA design for research applications”. The FEBS Journal. 283 (17): 3232–3238. doi:10.1111/febs.13777. PMC 5014588. PMID 27276584.
58. ^ Brazelton VA, Zarecor S, Wright DA, Wang Y, Liu J, Chen K, et al. (2015). “A quick guide to CRISPR
sgRNA design tools”. GM Crops & Food. 6 (4): 266–276. doi:10.1080/21645698.2015.1137690. PMC 5033207. PMID 26745836.
59. ^ “Researchers establish new viable CRISPR-Cas12b system for plant genome engineering”. phys.org. Retrieved 6 April
2020.
60. ^ Ming M, Ren Q, Pan C, He Y, Zhang Y, Liu S, et al. (March 2020). “CRISPR-Cas12b enables efficient plant genome engineering”. Nature Plants. 6 (3): 202–208. doi:10.1038/s41477-020-0614-6. PMID 32170285. S2CID 212643374.
61. ^
Cox DB, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (November 2017). “RNA editing with CRISPR-Cas13”. Science. 358 (6366): 1019–1027. Bibcode:2017Sci…358.1019C. doi:10.1126/science.aaq0180. PMC 5793859. PMID 29070703.
62. ^
“CRISPR-Cas3 innovation holds promise for disease cures, advancing science”. Cornell Chronicle. Retrieved 24 October 2021.
63. ^ Dolan AE, Hou Z, Xiao Y, Gramelspacher MJ, Heo J, Howden SE, et al. (June 2019). “Introducing a Spectrum of
Long-Range Genomic Deletions in Human Embryonic Stem Cells Using Type I CRISPR-Cas”. Molecular Cell. 74 (5): 936–950.e5. doi:10.1016/j.molcel.2019.03.014. PMC 6555677. PMID 30975459.
64. ^ Liu Z, Dong H, Cui Y, Cong L, Zhang D (September
2020). “Application of different types of CRISPR/Cas-based systems in bacteria”. Microbial Cell Factories. 19 (1): 172. doi:10.1186/s12934-020-01431-z. PMC 7470686. PMID 32883277.
65. ^ “Researchers develop an engineered ‘mini’ CRISPR
genome editing system”. phys.org. Retrieved 18 October 2021.
66. ^ Xu X, Chemparathy A, Zeng L, Kempton HR, Shang S, Nakamura M, Qi LS (October 2021). “Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing”.
Molecular Cell. 81 (20): 4333–4345.e4. doi:10.1016/j.molcel.2021.08.008. PMID 34480847. S2CID 237417317.
67. ^ Bravo JP, Liu MS, Hibshman GN, Dangerfield TL, Jung K, McCool RS, et al. (March 2022). “Structural basis for mismatch surveillance
by CRISPR-Cas9”. Nature. 603 (7900): 343–347. Bibcode:2022Natur.603..343B. doi:10.1038/s41586-022-04470-1. PMC 8907077. PMID 35236982.
68. ^ “Protein tweak makes CRISPR gene editing 4,000 times less error-prone”. New Atlas. 2022-03-04. Retrieved
2022-03-07.
69. ^ Kato K, Zhou W, Okazaki S, Isayama Y, Nishizawa T, Gootenberg JS, et al. (June 2022). “Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex”. Cell. 185 (13): 2324–2337.e16. doi:10.1016/j.cell.2022.05.003.
PMID 35643083. S2CID 249103058.
 Lay summary: Williams S. “Neuroscientists expand CRISPR toolkit with new, compact Cas7-11 enzyme”. Massachusetts Institute of Technology. Retrieved 22 June 2022.
70. ^ “‘Softer’ form of CRISPR may
edit genes more accurately”. New Scientist. Retrieved 21 August 2022.
71. ^ Roy S, Juste SS, Sneider M, Auradkar A, Klanseck C, Li Z, et al. (July 2022). “Cas9/Nickase-induced allelic conversion by homologous chromosome-templated repair
in Drosophila somatic cells”. Science Advances. 8 (26): eabo0721. doi:10.1126/sciadv.abo0721. PMID 35776792.
72. ^ Horvath P, Barrangou R (January 2010). “CRISPR/Cas, the immune system of bacteria and archaea”. Science. 327 (5962): 167–170.
Bibcode:2010Sci…327..167H. doi:10.1126/science.1179555. PMID 20056882. S2CID 17960960.
73. ^ Bialk P, Rivera-Torres N, Strouse B, Kmiec EB (2015-06-08). “Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides
and CRISPR/Cas9 Systems”. PLOS ONE. 10 (6): e0129308. Bibcode:2015PLoSO..1029308B. doi:10.1371/journal.pone.0129308. PMC 4459703. PMID 26053390.
74. ^ Sander JD, Joung JK (April 2014). “CRISPR-Cas systems for editing, regulating and targeting
genomes”. Nature Biotechnology. 32 (4): 347–355. doi:10.1038/nbt.2842. PMC 4022601. PMID 24584096.
75. ^ Lino CA, Harper JC, Carney JP, Timlin JA (November 2018). “Delivering CRISPR: a review of the challenges and approaches”. Drug Delivery.
25 (1): 1234–1257. doi:10.1080/10717544.2018.1474964. PMC 6058482. PMID 29801422.
76. ^ Li L, Hu S, Chen X (July 2018). “Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities”. Biomaterials. 171: 207–218.
doi:10.1016/j.biomaterials.2018.04.031. PMC 5944364. PMID 29704747.
77. ^ Jain PK, Lo JH, Rananaware S, Downing M, Panda A, Tai M, et al. (November 2019). “Non-viral delivery of CRISPR/Cas9 complex using CRISPR-GPS nanocomplexes”. Nanoscale.
11 (44): 21317–21323. doi:10.1039/C9NR01786K. PMC 7709491. PMID 31670340.
78. ^ Jump up to:a b Yip BH (May 2020). “Recent Advances in CRISPR/Cas9 Delivery Strategies”. Biomolecules. 10 (6): 839. doi:10.3390/biom10060839. PMC 7356196. PMID
32486234.
79. ^ Bak RO, Porteus MH (July 2017). “CRISPR-Mediated Integration of Large Gene Cassettes Using AAV Donor Vectors”. Cell Reports. 20 (3): 750–756. doi:10.1016/j.celrep.2017.06.064. PMC 5568673. PMID 28723575.
80. ^ Schmidt F,
Grimm D (February 2015). “CRISPR genome engineering and viral gene delivery: a case of mutual attraction”. Biotechnology Journal. 10 (2): 258–272. doi:10.1002/biot.201400529. PMID 25663455. S2CID 37653318.
81. ^ Waxmonsky N (24 September
2015). “CRISPR 101: Mammalian Expression Systems and Delivery Methods”. Retrieved 11 June 2018.
82. ^ Mishra T, Bhardwaj V, Ahuja N, Gadgil P, Ramdas P, Shukla S, Chande A (June 2022). “Improved loss-of-function CRISPR-Cas9 genome editing
in human cells concomitant with inhibition of TGF-β signaling”. Molecular Therapy. Nucleic Acids. 28: 202–218. doi:10.1016/j.omtn.2022.03.003. PMC 8961078. PMID 35402072.
83. ^ Adli M (May 2018). “The CRISPR tool kit for genome editing and
beyond”. Nature Communications. 9 (1): 1911. Bibcode:2018NatCo…9.1911A. doi:10.1038/s41467-018-04252-2. PMC 5953931. PMID 29765029.
84. ^ Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (November 2016). “Genome editing in maize
directed by CRISPR-Cas9 ribonucleoprotein complexes”. Nature Communications. 7 (1): 13274. Bibcode:2016NatCo…713274S. doi:10.1038/ncomms13274. PMC 5116081. PMID 27848933.
85. ^ Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, et al. (January
2017). “Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes”. Nature Communications. 8 (1): 14261. Bibcode:2017NatCo…814261L. doi:10.1038/ncomms14261. PMC 5253684. PMID 28098143. S2CID 17028472.
86. ^
Cui Z, Tian R, Huang Z, Jin Z, Li L, Liu J, et al. (March 2022). “FrCas9 is a CRISPR/Cas9 system with high editing efficiency and fidelity”. Nature Communications. 13 (1): 1425. Bibcode:2022NatCo..13.1425C. doi:10.1038/s41467-022-29089-8.
PMC 8931148. PMID 35301321.
87. ^ Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (January 2016). “High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects”. Nature. 529 (7587): 490–495.
Bibcode:2016Natur.529..490K. doi:10.1038/nature16526. PMC 4851738. PMID 26735016.
88. ^ Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (January 2016). “Rationally engineered Cas9 nucleases with improved specificity”. Science.
351 (6268): 84–88. Bibcode:2016Sci…351…84S. doi:10.1126/science.aad5227. PMC 4714946. PMID 26628643.
89. ^ Yin H, Song CQ, Suresh S, Kwan SY, Wu Q, Walsh S, et al. (March 2018). “Partial DNA-guided Cas9 enables genome editing with reduced
off-target activity”. Nature Chemical Biology. 14 (3): 311–316. doi:10.1038/nchembio.2559. PMC 5902734. PMID 29377001.
90. ^ Riesenberg S, Helmbrecht N, Kanis P, Maricic T, Pääbo S (January 2022). “Improved gRNA secondary structures allow
editing of target sites resistant to CRISPR-Cas9 cleavage”. Nature Communications. 13 (1): 489. Bibcode:2022NatCo..13..489R. doi:10.1038/s41467-022-28137-7. PMC 8789806. PMID 35078986. S2CID 246281892.
91. ^ Fu Y, Sander JD, Reyon D, Cascio
VM, Joung JK (March 2014). “Improving CRISPR-Cas nuclease specificity using truncated guide RNAs”. Nature Biotechnology. 32 (3): 279–284. doi:10.1038/nbt.2808. PMC 3988262. PMID 24463574.
92. ^ Thean DG, Chu HY, Fong JH, Chan BK, Zhou P,
Kwok CC, et al. (April 2022). “Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities”. Nature Communications. 13 (1): 2219. doi:10.1038/s41467-022-29874-5. PMC 9039034.
PMID 35468907.
93. ^ Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS (January 2014). “Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases”. Genome Research. 24 (1): 132–141. doi:10.1101/gr.162339.113.
PMC 3875854. PMID 24253446.
94. ^ Jump up to:a b Oakes BL, Nadler DC, Flamholz A, Fellmann C, Staahl BT, Doudna JA, Savage DF (June 2016). “Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch”. Nature Biotechnology.
34 (6): 646–651. doi:10.1038/nbt.3528. PMC 4900928. PMID 27136077.
95. ^ Nuñez JK, Harrington LB, Doudna JA (March 2016). “Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering”. ACS Chemical Biology. 11 (3): 681–688.
doi:10.1021/acschembio.5b01019. PMID 26857072.
96. ^ Zhou W, Deiters A (April 2016). “Conditional Control of CRISPR/Cas9 Function”. Angewandte Chemie. 55 (18): 5394–5399. doi:10.1002/anie.201511441. PMID 26996256.
97. ^ Polstein LR, Gersbach
CA (March 2015). “A light-inducible CRISPR-Cas9 system for control of endogenous gene activation”. Nature Chemical Biology. 11 (3): 198–200. doi:10.1038/nchembio.1753. PMC 4412021. PMID 25664691.
98. ^ Nihongaki Y, Yamamoto S, Kawano F,
Suzuki H, Sato M (February 2015). “CRISPR-Cas9-based photoactivatable transcription system”. Chemistry & Biology. 22 (2): 169–174. doi:10.1016/j.chembiol.2014.12.011. PMID 25619936.
99. ^ Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales
JA, Kornfeld JE, Doudna JA (March 2015). “Rational design of a split-Cas9 enzyme complex”. Proceedings of the National Academy of Sciences of the United States of America. 112 (10): 2984–2989. Bibcode:2015PNAS..112.2984W. doi:10.1073/pnas.1501698112.
PMC 4364227. PMID 25713377.
100. ^ Nihongaki Y, Kawano F, Nakajima T, Sato M (July 2015). “Photoactivatable CRISPR-Cas9 for optogenetic genome editing”. Nature Biotechnology. 33 (7): 755–760. doi:10.1038/nbt.3245. PMID 26076431. S2CID 205281536.
101. ^
Hemphill J, Borchardt EK, Brown K, Asokan A, Deiters A (May 2015). “Optical Control of CRISPR/Cas9 Gene Editing”. Journal of the American Chemical Society. 137 (17): 5642–5645. doi:10.1021/ja512664v. PMC 4919123. PMID 25905628.
102. ^ Jain
PK, Ramanan V, Schepers AG, Dalvie NS, Panda A, Fleming HE, Bhatia SN (September 2016). “Development of Light-Activated CRISPR Using Guide RNAs with Photocleavable Protectors”. Angewandte Chemie. 55 (40): 12440–12444. doi:10.1002/anie.201606123.
PMC 5864249. PMID 27554600.
103. ^ Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR (May 2015). “Small molecule-triggered Cas9 protein with improved genome-editing specificity”. Nature Chemical Biology. 11 (5): 316–318. doi:10.1038/nchembio.1793.
PMC 4402137. PMID 25848930.
104. ^ Liu KI, Ramli MN, Woo CW, Wang Y, Zhao T, Zhang X, et al. (November 2016). “A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing”. Nature Chemical Biology. 12 (11): 980–987. doi:10.1038/nchembio.2179.
PMID 27618190. S2CID 33891039.
105. ^ Truong DJ, Kühner K, Kühn R, Werfel S, Engelhardt S, Wurst W, Ortiz O (July 2015). “Development of an intein-mediated split-Cas9 system for gene therapy”. Nucleic Acids Research. 43 (13): 6450–6458.
doi:10.1093/nar/gkv601. PMC 4513872. PMID 26082496.
106. ^ Zetsche B, Volz SE, Zhang F (February 2015). “A split-Cas9 architecture for inducible genome editing and transcription modulation”. Nature Biotechnology. 33 (2): 139–142. doi:10.1038/nbt.3149.
PMC 4503468. PMID 25643054.
107. ^ González F, Zhu Z, Shi ZD, Lelli K, Verma N, Li QV, Huangfu D (August 2014). “An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells”. Cell Stem Cell.
15 (2): 215–226. doi:10.1016/j.stem.2014.05.018. PMC 4127112. PMID 24931489.
108. ^ Dow LE, Fisher J, O’Rourke KP, Muley A, Kastenhuber ER, Livshits G, et al. (April 2015). “Inducible in vivo genome editing with CRISPR-Cas9”. Nature Biotechnology.
33 (4): 390–394. doi:10.1038/nbt.3155. PMC 4390466. PMID 25690852.
109. ^ Yu C, Liu Y, Ma T, Liu K, Xu S, Zhang Y, et al. (February 2015). “Small molecules enhance CRISPR genome editing in pluripotent stem cells”. Cell Stem Cell. 16 (2):
142–147. doi:10.1016/j.stem.2015.01.003. PMC 4461869. PMID 25658371.
110. ^ Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (May 2015). “Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition
of nonhomologous end joining”. Nature Biotechnology. 33 (5): 538–542. doi:10.1038/nbt.3190. PMC 4618510. PMID 25798939.
111. ^ Jump up to:a b Ma X, Chen X, Jin Y, Ge W, Wang W, Kong L, et al. (April 2018). “Small molecules promote CRISPR-Cpf1-mediated
genome editing in human pluripotent stem cells”. Nature Communications. 9 (1): 1303. Bibcode:2018NatCo…9.1303M. doi:10.1038/s41467-018-03760-5. PMC 5880812. PMID 29610531.
112. ^ Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata
M, et al. (September 2016). “Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems”. Science. 353 (6305): aaf8729. doi:10.1126/science.aaf8729. PMID 27492474. S2CID 5122081.
113. ^ Komor AC, Kim YB,
Packer MS, Zuris JA, Liu DR (May 2016). “Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage”. Nature. 533 (7603): 420–424. Bibcode:2016Natur.533..420K. doi:10.1038/nature17946. PMC 4873371. PMID 27096365.
114. ^
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (November 2017). “Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage”. Nature. 551 (7681): 464–471. Bibcode:2017Natur.551..464G. doi:10.1038/nature24644.
PMC 5726555. PMID 29160308.
115. ^ Chen L, Park JE, Paa P, Rajakumar PD, Prekop HT, Chew YT, et al. (March 2021). “Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins”. Nature Communications. 12
(1): 1384. Bibcode:2021NatCo..12.1384C. doi:10.1038/s41467-021-21559-9. PMC 7925527. PMID 33654077.
116. ^ Jump up to:a b c Kurata M, Yamamoto K, Moriarity BS, Kitagawa M, Largaespada DA (February 2018). “CRISPR/Cas9 library screening for
drug target discovery”. Journal of Human Genetics. 63 (2): 179–186. doi:10.1038/s10038-017-0376-9. PMID 29158600. S2CID 3308058.
117. ^ Gasiunas G, Barrangou R, Horvath P, Siksnys V (September 2012). “Cas9-crRNA ribonucleoprotein complex
mediates specific DNA cleavage for adaptive immunity in bacteria”. Proceedings of the National Academy of Sciences of the United States of America. 109 (39): E2579–E2586. doi:10.1073/pnas.1208507109. PMC 3465414. PMID 22949671.
118. ^ Satomura
A, Nishioka R, Mori H, Sato K, Kuroda K, Ueda M (May 2017). “Precise genome-wide base editing by the CRISPR Nickase system in yeast”. Scientific Reports. 7 (1): 2095. Bibcode:2017NatSR…7.2095S. doi:10.1038/s41598-017-02013-7. PMC 5437071.
PMID 28522803.
119. ^ Hiranniramol K, Chen Y, Liu W, Wang X (May 2020). “Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency”. Bioinformatics. 36 (9): 2684–2689. doi:10.1093/bioinformatics/btaa041. PMC 7203743. PMID 31971562.
120. ^
Jump up to:a b c Agrotis A, Ketteler R (2015-09-24). “A new age in functional genomics using CRISPR/Cas9 in arrayed library screening”. Frontiers in Genetics. 6: 300. doi:10.3389/fgene.2015.00300. PMC 4585242. PMID 26442115.
121. ^ Yu JS,
Yusa K (July 2019). “Genome-wide CRISPR-Cas9 screening in mammalian cells”. Methods. 164–165: 29–35. doi:10.1016/j.ymeth.2019.04.015. PMID 31034882. S2CID 140275157.
122. ^ Jump up to:a b Joung J, Konermann S, Gootenberg JS, Abudayyeh OO,
Platt RJ, Brigham MD, et al. (April 2017). “Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening”. Nature Protocols. 12 (4): 828–863. doi:10.1038/nprot.2017.016. PMC 5526071. PMID 28333914.
123. ^ “Addgene: Pooled Libraries”.
www.addgene.org. Retrieved 2020-01-31.
124. ^ McDade JR, Waxmonsky NC, Swanson LE, Fan M (July 2016). “Practical Considerations for Using Pooled Lentiviral CRISPR Libraries”. Current Protocols in Molecular Biology. 115 (1): 31.5.1–31.5.13.
doi:10.1002/cpmb.8. PMID 27366891. S2CID 5055878.
125. ^ Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, et al. (October 2013). “Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system”.
Cell Research. 23 (10): 1163–1171. doi:10.1038/cr.2013.122. PMC 3790238. PMID 23979020.
126. ^ Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. (October 2014). “Genome-Scale CRISPR-Mediated Control of Gene Repression
and Activation”. Cell. 159 (3): 647–661. doi:10.1016/j.cell.2014.09.029. PMC 4253859. PMID 25307932.
127. ^ Jump up to:a b Dow LE (October 2015). “Modeling Disease In Vivo With CRISPR/Cas9”. Trends in Molecular Medicine. 21 (10): 609–621.
doi:10.1016/j.molmed.2015.07.006. PMC 4592741. PMID 26432018.
128. ^ Doudna J, Mali P (2016). CRISPR-Cas: A Laboratory Manual. Cold Spring Harbor, New York. ISBN 978-1-62182-130-4. OCLC 922914104.
129. ^ Zuo E, Huo X, Yao X, Hu X, Sun
Y, Yin J, et al. (November 2017). “CRISPR/Cas9-mediated targeted chromosome elimination”. Genome Biology. 18 (1): 224. doi:10.1186/s13059-017-1354-4. PMC 5701507. PMID 29178945.
 “CRISPR Used to Eliminate Targeted Chromosomes in New
Study”. Genome Web. Nov 27, 2017.
130. ^ Javed MR, Sadaf M, Ahmed T, Jamil A, Nawaz M, Abbas H, Ijaz A (December 2018). “CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms”. review. Current Microbiology.
75 (12): 1675–1683. doi:10.1007/s00284-018-1547-4. PMID 30078067. S2CID 51920661.
131. ^ DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (April 2013). “Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems”.
Nucleic Acids Res. 41 (7): 4336–43. doi:10.1093/nar/gkt135. PMC 3627607. PMID 23460208.
132. ^ Giersch RM, Finnigan GC (December 2017). “Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in S. cerevisiae”. The Yale
Journal of Biology and Medicine. 90 (4): 643–651. PMC 5733842. PMID 29259528.
133. ^ Dhamad AE, Lessner DJ (October 2020). Atomi H (ed.). “A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by
Methanosarcina acetivorans”. Applied and Environmental Microbiology. 86 (21): e01402–20. doi:10.1128/AEM.01402-20. PMC 7580536. PMID 32826220.
134. ^ Raschmanová H, Weninger A, Glieder A, Kovar K, Vogl T (2018). “Implementing CRISPR-Cas
technologies in conventional and non-conventional yeasts: Current state and future prospects”. review. Biotechnology Advances. 36 (3): 641–665. doi:10.1016/j.biotechadv.2018.01.006. PMID 29331410.
135. ^ Jump up to:a b Ma D, Liu F (December
2015). “Genome Editing and Its Applications in Model Organisms”. review. Genomics, Proteomics & Bioinformatics. 13 (6): 336–344. doi:10.1016/j.gpb.2015.12.001. PMC 4747648. PMID 26762955.
136. ^ Khurshid H, Jan SA, Shinwari ZK, Jamal M,
Shah SH (2018). “An Era of CRISPR/ Cas9 Mediated Plant Genome Editing”. review. Current Issues in Molecular Biology. 26: 47–54. doi:10.21775/cimb.026.047. PMID 28879855.
137. ^ Simone BW, Martínez-Gálvez G, WareJoncas Z, Ekker SC (November
2018). “Fishing for understanding: Unlocking the zebrafish gene editor’s toolbox”. review. Methods. 150: 3–10. doi:10.1016/j.ymeth.2018.07.012. PMC 6590056. PMID 30076892.
138. ^ Singh P, Schimenti JC, Bolcun-Filas E (January 2015). “A
mouse geneticist’s practical guide to CRISPR applications”. review. Genetics. 199 (1): 1–15. doi:10.1534/genetics.114.169771. PMC 4286675. PMID 25271304.
139. ^ Soni D, Wang DM, Regmi SC, Mittal M, Vogel SM, Schlüter D, Tiruppathi C (May
2018). “Deubiquitinase function of A20 maintains and repairs endothelial barrier after lung vascular injury”. Cell Death Discovery. 4 (60): 60. doi:10.1038/s41420-018-0056-3. PMC 5955943. PMID 29796309.
140. ^ Birling MC, Herault Y, Pavlovic
G (August 2017). “Modeling human disease in rodents by CRISPR/Cas9 genome editing”. Mammalian Genome. 28 (7–8): 291–301. doi:10.1007/s00335-017-9703-x. PMC 5569124. PMID 28677007.
141. ^ Gao X, Tao Y, Lamas V, Huang M, Yeh WH, Pan B, et
al. (January 2018). “Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents”. Nature. 553 (7687): 217–221. Bibcode:2018Natur.553..217G. doi:10.1038/nature25164. PMC 5784267. PMID 29258297.
142. ^ Kadam
US, Shelake RM, Chavhan RL, Suprasanna P (October 2018). “Concerns regarding ‘off-target’ activity of genome editing endonucleases”. review. Plant Physiology and Biochemistry. 131: 22–30. doi:10.1016/j.plaphy.2018.03.027. PMID 29653762.
S2CID 4846191.
143. ^ Kimberland ML, Hou W, Alfonso-Pecchio A, Wilson S, Rao Y, Zhang S, Lu Q (October 2018). “Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments”.
review. Journal of Biotechnology. 284: 91–101. doi:10.1016/j.jbiotec.2018.08.007. PMID 30142414. S2CID 52078796.
144. ^ van Erp PB, Bloomer G, Wilkinson R, Wiedenheft B (June 2015). “The history and market impact of CRISPR RNA-guided nucleases”.
Current Opinion in Virology. 12: 85–90. doi:10.1016/j.coviro.2015.03.011. PMC 4470805. PMID 25914022.
145. ^ Maggio I, Gonçalves MA (May 2015). “Genome editing at the crossroads of delivery, specificity, and fidelity”. Trends in Biotechnology.
33 (5): 280–291. doi:10.1016/j.tibtech.2015.02.011. PMID 25819765.
146. ^ Rath D, Amlinger L, Rath A, Lundgren M (October 2015). “The CRISPR-Cas immune system: biology, mechanisms and applications”. Biochimie. 117: 119–128. doi:10.1016/j.biochi.2015.03.025.
PMID 25868999.
147. ^ “What Is CRISPR? How Does It Work? Is It Gene Editing?”. LiveScience.Tech. 2018-04-30. Archived from the original on 2020-02-06. Retrieved 2020-02-06.
148. ^ Jump up to:a b Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane
R, Agrawal V, et al. (October 2015). “Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids”. Nature Communications. 6: 8715. Bibcode:2015NatCo…6.8715F. doi:10.1038/ncomms9715. PMC
4620584. PMID 26493500.
149. ^ Cruz NM, Song X, Czerniecki SM, Gulieva RE, Churchill AJ, Kim YK, et al. (November 2017). “Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease”. Nature Materials.
16 (11): 1112–1119. Bibcode:2017NatMa..16.1112C. doi:10.1038/nmat4994. PMC 5936694. PMID 28967916.
150. ^ Kim YK, Refaeli I, Brooks CR, Jing P, Gulieva RE, Hughes MR, et al. (December 2017). “Gene-Edited Human Kidney Organoids Reveal Mechanisms
of Disease in Podocyte Development”. Stem Cells. 35 (12): 2366–2378. doi:10.1002/stem.2707. PMC 5742857. PMID 28905451.
151. ^ Bellin M, Casini S, Photo credit: https://www.flickr.com/photos/romanboed/8673416166/’]