marine coastal ecosystem


  • [137][138][139] Besides sea surface temperature, climate change also affects many other physical–chemical characteristics of marine coastal waters (stratification, acidification,
    ventilation)[140][141] as well as the wind regimes that control surface water productivity along the productive coastal upwelling ecosystems.

  • [91][92] Coastal eutrophication and excess nutrient supply can have strong impacts on corals, leading to a decrease in skeletal growth,[85][93][94][95][81] • Pathways for
    guano-derived nitrogen to enter marine food webs[81] • Seabird colonies are nutrient hot spots, especially, for nitrogen and phosphorus[65] Coastal predators[edit] Predicted effects of predators, or lack of predators, on ecosystem services
    (carbon sequestration, coastal protection, and ecosystem stability) in coastal plant communities.

  • [141][147][150] Long-term increases and decreases in plankton productivity have already occurred over the past two decades[151][152] along extensive regions of the Humboldt
    upwelling ecosystem off Chile, and are expected to propagate up the pelagic and benthic food webs.

  • [55] Physically formed by brown macroalgae, kelp forests provide a unique habitat for marine organisms[56] and are a source for understanding many ecological processes.

  • [69][77][78][79] In the tropics, coral reefs can be found adjacent to islands with large populations of breeding seabirds, and could be potentially affected by local nutrient
    enrichment due to the transport of seabird-derived nutrients in surrounding waters.

  • [23] Vegetated[edit] Global distribution of seagrasses, tidal marshes, and mangroves[24] See also: Blue carbon Vegetated coastal ecosystems occur throughout the world, as
    illustrated in the diagram on the right.

  • [25][24] Vegetated coastal ecosystems typically reside over organic-rich sediments that may be several meters deep and effectively lock up carbon due to low-oxygen conditions
    and other factors that inhibit decomposition at depth.

  • [114] The idea that the extirpation of predators can have far-reaching effects on the persistence of coastal plants and their ecosystem services has become a major motivation
    for their conservation in coastal systems.

  • Across coastal ecosystems, the loss of marine predators appears to negatively affect coastal plant communities and the ecosystem services they provide.

  • [6][7][1] Currently, coastal seas around the world are undergoing major ecological changes driven by human-induced pressures, such as climate change, anthropogenic nutrient
    inputs, overfishing and the spread of invasive species.

  • [38] mangroves dominate salt marshes dominate Coastal wetlands are among the most productive ecosystems on Earth and generate vital services that benefit human societies around
    the world.

  • They are extremely productive ecosystems and they provide essential services for more than 75 percent of fishery species and protect shorelines from erosion and flooding.

  • For example, kelp forests can influence coastal oceanographic patterns[57] and provide many ecosystem services.

  • For example, estuaries are areas where freshwater rivers meet the saltwater of the ocean, creating an environment that is home to a wide variety of species, including fish,
    shellfish, and birds.

  • These structures function as some of the most biodiverse ecosystems on the planet, providing habitat and food for a huge range of marine organisms.

  • [72][73] However, although many studies have demonstrated nitrogen enrichment of terrestrial components due to guano deposition across various taxonomic groups,[72][74][75][76]
    only a few have studied its retroaction on marine ecosystems and most of these studies were restricted to temperate regions and high nutrient waters.

  • In coastal plant communities, such as kelp, seagrass meadows, mangrove forests and salt marshes, several studies have documented the far-reaching effects of changing predator

  • When marine coastal ecosystems are damaged or destroyed, there can be serious consequences for the marine species that depend on them, as well as for the overall health of
    the ocean ecosystem.

  • [19] Lagoons are also important to the economy as they provide a wide array of ecosystem services in addition to being the home of so many different species.

  • [135] Coral reefs, seagrasses, and mangroves buffer habitats further inland from storms and wave damage as well as participate in a tri-system exchange of mobile fish and

  • Combined, these ecosystems cover about 50 million hectares and provide a diverse array of ecosystem services such as fishery production, coastline protection, pollution buffering,
    as well as high rates of carbon sequestration.

  • Causes of habitat conversion vary globally and include conversion to aquaculture, agriculture, forest over-exploitation, industrial use, upstream dams, dredging, eutrophication
    of overlying waters, urban development, and conversion to open water due to accelerated sea-level rise and subsidence.

  • [44] Further, near-shore wetlands act as both essential nursery habitats and feeding grounds for game fish, supporting a diverse group of economically important species.

  • [135] Network ecology[edit] See also: Network ecology and Marine food web § Topological position Intertidal food web highlighting nodes and links of (A) artisanal fisheries
    and (B) plankton[136] To compound things, removal of biomass from the ocean occurs simultaneously with multiple other stressors associated to climate change that compromise the capacity of these socio-ecological systems to respond to perturbations.

  • [16] This can be seen as, of the 32 largest cities in the world, 22 are located on estuaries as they provide many environmental and economic benefits such as crucial habitat
    for many species, and being economic hubs for many coastal communities.

  • Salt marshes are coastal wetlands which thrive on low-energy shorelines in temperate and high-latitude areas, populated with salt-tolerant plants such as cordgrass and marsh
    elder that provide important nursery areas for many species of fish and shellfish.

  • [66] Ecologists are increasingly recognizing the important effects that cross-ecosystem transport of energy and nutrients have on plant and animal populations and communities.

  • [77][80][81] Reef building corals have essential nitrogen needs and, thriving in nutrient-poor tropical waters[82] where nitrogen is a major limiting nutrient for primary
    productivity,[83] they have developed specific adaptations for conserving this element.

  • They provide habitats and food for a diversity of marine life comparable to coral reefs.

  • Due to marine heatwaves that have high warming levels coral reefs are at risk of a great decline, loss of its important structures, and exposure to higher frequency of marine

  • Plankton contributes approximately half of the global primary production, supports marine food webs, influences the biogeochemical process in the ocean, and strongly affects
    commercial fisheries.

  • [16] Estuaries also provide essential ecosystem services such as water filtration, habitat protection, erosion control, gas regulation nutrient cycling, and it even gives
    education, recreation and tourism opportunities to people.

  • These ecosystems are vulnerable to various anthropogenic and natural disturbances, such as pollution, overfishing, and coastal development, which have significant impacts
    on their ecological functioning and the services they provide.

  • [60][61] Already due to the combined effects of overfishing and climate change, kelp forests have all but disappeared in many especially vulnerable places, such as Tasmania’s
    east coast and the coast of Northern California.

  • [19] Lagoons can be found in on coasts all over the world, on every continent except Antarctica and is an extremely diverse habitat being home to a wide array of species including
    birds, fish, crabs, plankton and more.

  • [98][96] With an estimated habitat loss greater than 50 percent, coastal plant communities are among the world’s most endangered ecosystems.

  • [62][63] The implementation of marine protected areas is one management strategy useful for addressing such issues, since it may limit the impacts of fishing and buffer the
    ecosystem from additive effects of other environmental stressors.

  • Directly and indirectly, marine coastal ecosystems provide vast arrays of ecosystem services for humans, such as cycling nutrients and elements, and purifying water by filtering

  • [27][28] When coastal habitats are degraded or converted to other land uses, the sediment carbon is destabilised or exposed to oxygen, and subsequent increased microbial activity
    releases large amounts of greenhouse gasses to the atmosphere or water column.

  • [14] The low intertidal zone is submerged nearly all the time except during the lowest tides and life is more abundant here due to the protection that the water gives.

  • [155][156][163][164][165][136] Coastal biogeochemistry Globally, eutrophication is one of the major environmental problems in coastal ecosystems.

  • Marine coastal ecosystems include many very different types of marine habitats, each with their own characteristics and species composition.

  • [10][106] Following global declines in marine predators, evidence of trophic cascades in coastal ecosystems started to emerge,[107][108][109][110] with the disturbing realisation
    that they affected more than just populations of lower trophic levels.

  • [1] Coastal systems also contribute to the regulation of climate and nutrient cycles, by efficiently processing anthropogenic emissions from land before they reach the ocean.

  • [15] Estuaries are extremely productive ecosystems that many humans and animal species rely on for various activities.

  • [25][24] Rapid loss of vegetated coastal ecosystems through land-use change has occurred for centuries, and has accelerated in recent decades.

  • Fisheries are characterized by migratory species, and therefore, protecting fisheries in one ecosystem increases fish biomass in others.

  • In slightly deeper waters are kelp forests, underwater ecosystems found in cold, nutrient-rich waters, primarily in temperate regions.

  • Overview Coastal seas are highly productive systems, providing an array of ecosystem services to humankind, such as processing of nutrient effluents from land and climate

  • [153] Previous studies used this framework to assess food web robustness against species extinctions, defined as the fraction of initial species that remain present in the
    ecosystem after a primary extinction.

  • [26] These carbon stocks can exceed those of terrestrial ecosystems, including forests, by several times.

  • [96] Food web theory predicts that current global declines in marine predators could generate unwanted consequences for many marine ecosystems.

  • Coastal protection (storm/wave attenuation) maintains the structure of adjacent ecosystems, and associated ecosystem services, in an offshore-to-onshore direction.

  • [98][96] Understanding the importance of predators in coastal plant communities has been bolstered by their documented ability to influence ecosystem services.

  • [154] Other studies used a dynamic approach, which considers not only the structure and intensity of interactions in a food web, but also the changes in species biomasses
    through time and the indirect effects that these changes have on other species.

  • [105] However, for most large bodied, marine predators (toothed whales, large pelagic fish, sea birds, pinnipeds, and otters) the beginning of their sharp global declines
    occurred over the last century, coinciding with the expansion of coastal human populations and advances in industrial fishing.

  • [53] Salt marshes exist around the world and are needed for healthy ecosystems and a healthy economy.

  • [29][26][30][31][32][33] The potential economic impacts that come from releasing stored coastal blue carbon to the atmosphere are felt worldwide.

  • [50] The mangrove ecosystem is also an important source of food for many species as well as excellent at sequestering carbon dioxide from the atmosphere with global mangrove
    carbon storage is estimated at 34 million metric tons per year.

  • [35] Diagram showing connectivity between a vegetated coastal ecosystem for the Penaeid prawn lifecycle indicating that valuations for harvest areas may overlook critical
    importance within the lifecycle.

  • [21] • Coral reef • Global distribution of coral, mangrove, and seagrass diversity • A shy but threatened dugong grazes a seagrass meadow, encouraging regrowth[22] Bivalve
    reefs[edit] Ecosystem services delivered by epibenthic bivalve reefs Bivalve reefs provide coastal protection through erosion control and shoreline stabilization, and modify the physical landscape by ecosystem engineering, thereby providing
    habitat for species by facilitative interactions with other habitats such as tidal flat benthic communities, seagrasses and marshes.

  • Seagrass meadows provide coastal storm protection by the way their leaves absorb energy from waves as they hit the coast.

  • It is predicted that predators, through direct and indirect interactions with lower trophic levels, support increased carbon uptake in plants and soils, protect coasts from
    storm surges and flooding, and support stability and resistance.


Works Cited

[‘1. Ehrnsten, Eva; Sun, Xiaole; Humborg, Christoph; Norkko, Alf; Savchuk, Oleg P.; Slomp, Caroline P.; Timmermann, Karen; Gustafsson, Bo G. (2020). “Understanding Environmental Changes in Temperate Coastal Seas: Linking Models of Benthic Fauna to Carbon
and Nutrient Fluxes”. Frontiers in Marine Science. 7. doi:10.3389/fmars.2020.00450. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
2. ^ Tappin, A.D. (2002). “An Examination
of the Fluxes of Nitrogen and Phosphorus in Temperate and Tropical Estuaries: Current Estimates and Uncertainties”. Estuarine, Coastal and Shelf Science. 55 (6): 885–901. Bibcode:2002ECSS…55..885T. doi:10.1006/ecss.2002.1034.
3. ^ Laruelle, G.
G.; Roubeix, V.; Sferratore, A.; Brodherr, B.; Ciuffa, D.; Conley, D. J.; Dürr, H. H.; Garnier, J.; Lancelot, C.; Le Thi Phuong, Q.; Meunier, J.-D.; Meybeck, M.; Michalopoulos, P.; Moriceau, B.; Ní Longphuirt, S.; Loucaides, S.; Papush, L.; Presti,
M.; Ragueneau, O.; Regnier, P.; Saccone, L.; Slomp, C. P.; Spiteri, C.; Van Cappellen, P. (2009). “Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the land-ocean transition”. Global Biogeochemical Cycles. 23 (4):
n/a. Bibcode:2009GBioC..23.4031L. doi:10.1029/2008GB003267. S2CID 130818402.
4. ^ Regnier, Pierre; Friedlingstein, Pierre; Ciais, Philippe; MacKenzie, Fred T.; Gruber, Nicolas; Janssens, Ivan A.; Laruelle, Goulven G.; Lauerwald, Ronny; Luyssaert,
Sebastiaan; Andersson, Andreas J.; Arndt, Sandra; Arnosti, Carol; Borges, Alberto V.; Dale, Andrew W.; Gallego-Sala, Angela; Goddéris, Yves; Goossens, Nicolas; Hartmann, Jens; Heinze, Christoph; Ilyina, Tatiana; Joos, Fortunat; Larowe, Douglas E.;
Leifeld, Jens; Meysman, Filip J. R.; Munhoven, Guy; Raymond, Peter A.; Spahni, Renato; Suntharalingam, Parvadha; Thullner, Martin (2013). “Anthropogenic perturbation of the carbon fluxes from land to ocean”. Nature Geoscience. 6 (8): 597–607. Bibcode:2013NatGe…6..597R.
doi:10.1038/ngeo1830. S2CID 53418968.
5. ^ Ramesh, R.; Chen, Z.; Cummins, V.; Day, J.; d’Elia, C.; Dennison, B.; Forbes, D.L.; Glaeser, B.; Glaser, M.; Glavovic, B.; Kremer, H.; Lange, M.; Larsen, J.N.; Le Tissier, M.; Newton, A.; Pelling, M.;
Purvaja, R.; Wolanski, E. (2015). “Land–Ocean Interactions in the Coastal Zone: Past, present & future”. Anthropocene. 12: 85–98. Bibcode:2015Anthr..12…85R. doi:10.1016/j.ancene.2016.01.005.
6. ^ Costanza, Robert; d’Arge, Ralph; De Groot, Rudolf;
Farber, Stephen; Grasso, Monica; Hannon, Bruce; Limburg, Karin; Naeem, Shahid; O’Neill, Robert V.; Paruelo, Jose; Raskin, Robert G.; Sutton, Paul; Van Den Belt, Marjan (1997). “The value of the world’s ecosystem services and natural capital”. Nature.
387 (6630): 253–260. Bibcode:1997Natur.387..253C. doi:10.1038/387253a0. S2CID 672256.
7. ^ Costanza, Robert; De Groot, Rudolf; Sutton, Paul; Van Der Ploeg, Sander; Anderson, Sharolyn J.; Kubiszewski, Ida; Farber, Stephen; Turner, R. Kerry (2014).
“Changes in the global value of ecosystem services”. Global Environmental Change. 26: 152–158. doi:10.1016/j.gloenvcha.2014.04.002. S2CID 15215236.
8. ^ Halpern, Benjamin S.; Walbridge, Shaun; Selkoe, Kimberly A.; Kappel, Carrie V.; Micheli, Fiorenza;
d’Agrosa, Caterina; Bruno, John F.; Casey, Kenneth S.; Ebert, Colin; Fox, Helen E.; Fujita, Rod; Heinemann, Dennis; Lenihan, Hunter S.; Madin, Elizabeth M. P.; Perry, Matthew T.; Selig, Elizabeth R.; Spalding, Mark; Steneck, Robert; Watson, Reg (2008).
“A Global Map of Human Impact on Marine Ecosystems”. Science. 319 (5865): 948–952. Bibcode:2008Sci…319..948H. doi:10.1126/science.1149345. PMID 18276889. S2CID 26206024.
9. ^ Jump up to:a b Cloern, James E.; Abreu, Paulo C.; Carstensen, Jacob;
Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John Olov Roger; Kahru, Mati; Sherwood, Edward T.; Xu, Jie; Yin, Kedong (2016). “Human activities and climate variability drive fast-paced change across the world’s estuarine-coastal
ecosystems”. Global Change Biology. 22 (2): 513–529. Bibcode:2016GCBio..22..513C. doi:10.1111/gcb.13059. PMID 26242490. S2CID 35848588.
10. ^ Jump up to:a b c d Lotze, Heike K.; Lenihan, Hunter S.; Bourque, Bruce J.; Bradbury, Roger H.; Cooke, Richard
G.; Kay, Matthew C.; Kidwell, Susan M.; Kirby, Michael X.; Peterson, Charles H.; Jackson, Jeremy B. C. (2006). “Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas”. Science. 312 (5781): 1806–1809. Bibcode:2006Sci…312.1806L.
doi:10.1126/science.1128035. PMID 16794081. S2CID 12703389.
11. ^ Kemp, W. M.; Testa, J. M.; Conley, D. J.; Gilbert, D.; Hagy, J. D. (2009). “Temporal responses of coastal hypoxia to nutrient loading and physical controls”. Biogeosciences. 6 (12):
2985–3008. Bibcode:2009BGeo….6.2985K. doi:10.5194/bg-6-2985-2009.
12. ^ United Nations (2017) Resolution adopted by the General Assembly on 6 July 2017, Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development
13. ^ Waltham, Nathan J.; Elliott, Michael; Lee, Shing Yip; Lovelock, Catherine; Duarte, Carlos M.; Buelow, Christina; Simenstad, Charles; Nagelkerken, Ivan; Claassens, Louw; Wen, Colin K-C; Barletta, Mario (2020). “UN Decade on Ecosystem
Restoration 2021–2030—What Chance for Success in Restoring Coastal Ecosystems?”. Frontiers in Marine Science. 7: 71. doi:10.3389/fmars.2020.00071. hdl:2440/123896. ISSN 2296-7745.
14. ^ Jump up to:a b c d e US Department of Commerce, National Oceanic
and Atmospheric Administration. “What is the intertidal zone?”. Retrieved 2019-03-21.
15. ^ Jump up to:a b US Department of Commerce, National Oceanic and Atmospheric Administration. “What is an estuary?”.
Retrieved 2019-03-22.
16. ^ Jump up to:a b US Department of Commerce, National Oceanic and Atmospheric Administration. “Estuaries, NOS Education Offering”. Retrieved 2019-03-22.
17. ^ “Estuaries”. 2013-11-14.
Retrieved 2019-03-24.
18. ^ US Department of Commerce, National Oceanic and Atmospheric Administration. “What is a lagoon?”. Retrieved 2019-03-24.
19. ^ Jump up to:a b c d Miththapala, Sriyanie (2013). “Lagoons and Estuaries”
(PDF). IUCN, International Union for Conservation of Nature.
20. ^ “Corals and Coral Reefs”. Ocean Portal | Smithsonian. 2012-09-12. Retrieved 2018-03-27.
21. ^ IPCC. Chapter 3: Oceans and Coastal Ecosystems and their Services. IPCC Sixth Assessment
Report. 1 October 2021.
22. ^ Harman, Amanda (1997). Manatees & dugongs (in Lithuanian). New York: Benchmark Books. p. 7. ISBN 0-7614-0294-2. OCLC 34319364.
23. ^ Ysebaert
T., Walles B., Haner J., Hancock B. (2019) “Habitat Modification and Coastal Protection by Ecosystem-Engineering Reef-Building Bivalves”. In: Smaal A., Ferreira J., Grant J., Petersen J., Strand Ø. (eds) Goods and Services of Marine Bivalves. Springer.
24. ^ Jump up to:a b c d Pendleton, Linwood; Donato, Daniel C.; Murray, Brian C.; Crooks, Stephen; Jenkins, W. Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W.; Kauffman, J. Boone; Marbà, Núria;
Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis (2012). “Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems”. PLOS ONE. 7 (9): e43542. Bibcode:2012PLoSO…743542P.
doi:10.1371/journal.pone.0043542. PMC 3433453. PMID 22962585. Material was copied from this source, which is available under a Creative Commons Attribution 0.0 International License.
25. ^ Jump up to:a b Pendleton, Linwood; Donato, Daniel C.; Murray,
Brian C.; Crooks, Stephen; Jenkins, W. Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W.; Kauffman, J. Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis (2012). “Estimating Global
“Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems”. PLOS ONE. 7 (9): e43542. Bibcode:2012PLoSO…743542P. doi:10.1371/journal.pone.0043542. PMC 3433453. PMID 22962585.
26. ^ Jump up to:a b Kristensen, Erik;
Bouillon, Steven; Dittmar, Thorsten; Marchand, Cyril (2008). “Organic carbon dynamics in mangrove ecosystems: A review”. Aquatic Botany. 89 (2): 201–219. doi:10.1016/j.aquabot.2007.12.005.
27. ^ Donato, Daniel C.; Kauffman, J. Boone; Murdiyarso,
Daniel; Kurnianto, Sofyan; Stidham, Melanie; Kanninen, Markku (2011). “Mangroves among the most carbon-rich forests in the tropics”. Nature Geoscience. 4 (5): 293–297. Bibcode:2011NatGe…4..293D. doi:10.1038/ngeo1123.
28. ^ Donato, D.C.; Kauffman,
J.B.; MacKenzie, R.A.; Ainsworth, A.; Pfleeger, A.Z. (2012). “Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration”. Journal of Environmental Management. 97: 89–96. doi:10.1016/j.jenvman.2011.12.004.
PMID 22325586.
29. ^ Eong, Ong Jin (1993). “Mangroves – a carbon source and sink”. Chemosphere. 27 (6): 1097–1107. Bibcode:1993Chmsp..27.1097E. doi:10.1016/0045-6535(93)90070-L.
30. ^ Granek, Elise; Ruttenberg, Benjamin I. (2008). “Changes in
biotic and abiotic processes following mangrove clearing”. Estuarine, Coastal and Shelf Science. 80 (4): 555–562. Bibcode:2008ECSS…80..555G. doi:10.1016/j.ecss.2008.09.012.
31. ^ Sjöling, Sara; Mohammed, Salim M.; Lyimo, Thomas J.; Kyaruzi, Jasson
J. (2005). “Benthic bacterial diversity and nutrient processes in mangroves: Impact of deforestation”. Estuarine, Coastal and Shelf Science. 63 (3): 397–406. Bibcode:2005ECSS…63..397S. doi:10.1016/j.ecss.2004.12.002.
32. ^ Strangmann, Antje; Bashan,
Yoav; Giani, Luise (2008). “Methane in pristine and impaired mangrove soils and its possible effect on establishment of mangrove seedlings”. Biology and Fertility of Soils. 44 (3): 511–519. doi:10.1007/s00374-007-0233-7. S2CID 18477012.
33. ^ Sweetman,
A. K.; Middelburg, J. J.; Berle, A. M.; Bernardino, A. F.; Schander, C.; Demopoulos, A. W. J.; Smith, C. R. (2010). “Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments”.
Biogeosciences. 7 (7): 2129–2145. Bibcode:2010BGeo….7.2129S. doi:10.5194/bg-7-2129-2010.
34. ^ Lovelock, Catherine E.; Ruess, Roger W.; Feller, Ilka C. (2011). “CO2 Efflux from Cleared Mangrove Peat”. PLOS ONE. 6 (6): e21279. Bibcode:2011PLoSO…621279L.
doi:10.1371/journal.pone.0021279. PMC 3126811. PMID 21738628.
35. ^ Jump up to:a b Gaylard, Sam; Waycott, Michelle; Lavery, Paul (19 June 2020). “Review of Coast and Marine Ecosystems in Temperate Australia Demonstrates a Wealth of Ecosystem Services”.
Frontiers in Marine Science. Frontiers Media SA. 7. doi:10.3389/fmars.2020.00453. ISSN 2296-7745. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
36. ^ d’Odorico, Paolo; He,
Yufei; Collins, Scott; De Wekker, Stephan F. J.; Engel, Vic; Fuentes, Jose D. (2013). “Vegetation-microclimate feedbacks in woodland-grassland ecotones”. Global Ecology and Biogeography. 22 (4): 364–379. doi:10.1111/geb.12000.
37. ^ Lee, Jeom-Sook;
Kim, Jong-Wook (2018). “Dynamics of zonal halophyte communities in salt marshes in the world”. Journal of Marine and Island Cultures. 7. doi:10.21463/JMIC.2018.07.1.06. S2CID 133926655.
38. ^ Cavanaugh, K. C.; Kellner, J. R.; Forde, A. J.; Gruner,
D. S.; Parker, J. D.; Rodriguez, W.; Feller, I. C. (2014). “Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events”. Proceedings of the National Academy of Sciences. 111 (2): 723–727. Bibcode:2014PNAS..111..723C.
doi:10.1073/pnas.1315800111. PMC 3896164. PMID 24379379.
39. ^ Gedan, Keryn B.; Kirwan, Matthew L.; Wolanski, Eric; Barbier, Edward B.; Silliman, Brian R. (2011). “The present and future role of coastal wetland vegetation in protecting shorelines:
Answering recent challenges to the paradigm”. Climatic Change. 106 (1): 7–29. Bibcode:2011ClCh..106….7G. doi:10.1007/s10584-010-0003-7. S2CID 17867808.
40. ^ Kadlec, Robert (2009). Treatment wetlands. Boca Raton, FL. ISBN 978-1-4200-1251-4. OCLC
41. ^ Yang, Q.; Tam, N.F.Y.; Wong, Y.S.; Luan, T.G.; Su, W.S.; Lan, C.Y.; Shin, P.K.S.; Cheung, S.G. (2008). “Potential use of mangroves as constructed wetland for municipal sewage treatment in Futian, Shenzhen, China”. Marine Pollution
Bulletin. 57 (6–12): 735–743. Bibcode:2008MarPB..57..735Y. doi:10.1016/j.marpolbul.2008.01.037. PMID 18342338.
42. ^ Ouyang, Xiaoguang; Guo, Fen (2016). “Paradigms of mangroves in treatment of anthropogenic wastewater pollution”. Science of the
Total Environment. 544: 971–979. Bibcode:2016ScTEn.544..971O. doi:10.1016/j.scitotenv.2015.12.013. PMID 26706768.
43. ^ Gambrell, R. P. (1994). “Trace and Toxic Metals in Wetlands-A Review”. Journal of Environmental Quality. 23 (5): 883–891. doi:10.2134/jeq1994.00472425002300050005x.
PMID 34872228.
44. ^ McLeod, Elizabeth; Chmura, Gail L.; Bouillon, Steven; Salm, Rodney; Björk, Mats; Duarte, Carlos M.; Lovelock, Catherine E.; Schlesinger, William H.; Silliman, Brian R. (2011). “A blueprint for blue carbon: Toward an improved
understanding of the role of vegetated coastal habitats in sequestering CO 2”. Frontiers in Ecology and the Environment. 9 (10): 552–560. doi:10.1890/110004.
45. ^ Lipcius, Romuald N.; Seitz, Rochelle D.; Seebo, Michael S.; Colón-Carrión, Duamed
(2005). “Density, abundance and survival of the blue crab in seagrass and unstructured salt marsh nurseries of Chesapeake Bay”. Journal of Experimental Marine Biology and Ecology. 319 (1–2): 69–80. doi:10.1016/j.jembe.2004.12.034.
46. ^ Jump up
to:a b Mumby, Peter J. (2006). “Connectivity of reef fish between mangroves and coral reefs: Algorithms for the design of marine reserves at seascape scales”. Biological Conservation. 128 (2): 215–222. doi:10.1016/j.biocon.2005.09.042.
47. ^ Aburto-Oropeza,
O.; Ezcurra, E.; Danemann, G.; Valdez, V.; Murray, J.; Sala, E. (2008). “Mangroves in the Gulf of California increase fishery yields”. Proceedings of the National Academy of Sciences. 105 (30): 10456–10459. Bibcode:2008PNAS..10510456A. doi:10.1073/pnas.0804601105.
PMC 2492483. PMID 18645185.
48. ^ Nagelkerken, I.; Blaber, S.J.M.; Bouillon, S.; Green, P.; Haywood, M.; Kirton, L.G.; Meynecke, J.-O.; Pawlik, J.; Penrose, H.M.; Sasekumar, A.; Somerfield, P.J. (2008). “The habitat function of mangroves for terrestrial
and marine fauna: A review”. Aquatic Botany. 89 (2): 155–185. doi:10.1016/j.aquabot.2007.12.007.
49. ^ Renzi, Julianna J.; He, Qiang; Silliman, Brian R. (2019). “Harnessing Positive Species Interactions to Enhance Coastal Wetland Restoration”. Frontiers
in Ecology and Evolution. 7. doi:10.3389/fevo.2019.00131. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
50. ^ Jump up to:a b US Department of Commerce, National Oceanic and
Atmospheric Administration. “What is a mangrove forest?”. Retrieved 2019-03-21.
51. ^ Jump up to:a b c “Mangroves”. Smithsonian Ocean. 30 April 2018. Retrieved 2019-03-21.
52. ^ Jump up to:a b c d “What is a Salt Marsh?”
(PDF). New Hampshire Department of Environmental Services. 2004.
53. ^ Jump up to:a b US Department of Commerce, National Oceanic and Atmospheric Administration. “What is a salt marsh?”. Retrieved 2019-03-20.
54. ^ Mann,
K.H. 1973. Seaweeds: their productivity and strategy for growth. Science 182: 975-981.
55. ^ Graham, M.H., B.P. Kinlan, L.D. Druehl, L.E. Garske, and S. Banks. 2007. Deep-water kelp refugia as potential hotspots of tropical marine diversity and
productivity. Proceedings of the National Academy of Sciences 104: 16576-16580.
56. ^ Christie, H., Jørgensen, N.M., Norderhaug, K.M., Waage-Nielsen, E., 2003. Species distribution and habitat exploitation of fauna associated with kelp (Laminaria
hyperborea) along the Norwegian coast. Journal of the Marine Biological Association of the UK 83, 687-699.
57. ^ Jackson, G.A. and C.D. Winant. 1983. Effect of a kelp forest on coastal currents. Continental Shelf Report 2: 75-80.
58. ^ Steneck,
R.S., M.H. Graham, B.J. Bourque, D. Corbett, J.M. Erlandson, J.A. Estes and M.J. Tegner. 2002. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental Conservation 29: 436-459.
59. ^ Sala, E., C.F. Bourdouresque and
M. Harmelin-Vivien. 1998. Fishing, trophic cascades, and the structure of algal assemblages: evaluation of an old but untested paradigm. Oikos 82: 425-439.
60. ^ Dayton, P.K. 1985a. Ecology of kelp communities. Annual Review of Ecology and Systematics
16: 215-245.
61. ^ Norderhaug, K.M., Christie, H., 2009. Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Marine Biology Research 5, 515-528
62. ^ Morton, Adam; Cordell, Marni; Fanner, David; Ball, Andy; Evershed, Nick. “The dead
sea: Tasmania’s underwater forests disappearing in our lifetime”. the Guardian. Retrieved 2020-10-22.
63. ^ Steinbauer, James. “What Will It Take to Bring Back the Kelp Forest? – Bay Nature Magazine”. Bay Nature. Retrieved 2020-10-22.
64. ^ Harris,
P.T.; Macmillan-Lawler, M.; Rupp, J.; Baker, E.K. (2014). “Geomorphology of the oceans”. Marine Geology. 352: 4–24. Bibcode:2014MGeol.352….4H. doi:10.1016/j.margeo.2014.01.011.
65. ^ Jump up to:a b Otero, X.L., De La Peña-Lastra, S., Pérez-Alberti,
A., Ferreira, T.O. and Huerta-Diaz, M.A. (2018) “Seabird colonies as important global drivers in the nitrogen and phosphorus cycles”. Nature communications, 9(1): 1–8. doi:10.1038/s41467-017-02446-8. Material was copied from this source, which is
available under a Creative Commons Attribution 4.0 International License.
66. ^ Barrett, Kyle; Anderson, Wendy B.; Wait, D. Alexander; Grismer, L. Lee; Polis†, Gary A.; Rose†, Michael D. (2005). “Marine subsidies alter the diet and abundance of
insular and coastal lizard populations”. Oikos. 109: 145–153. doi:10.1111/j.0030-1299.2005.13728.x.
67. ^ Polis, Gary A.; Hurd, Stephen D. (1996). “Linking Marine and Terrestrial Food Webs: Allochthonous Input from the Ocean Supports High Secondary
Productivity on Small Islands and Coastal Land Communities”. The American Naturalist. 147 (3): 396–423. doi:10.1086/285858. S2CID 84701185.
68. ^ Gende, Scott M.; Edwards, Richard T.; Willson, Mary F.; Wipfli, Mark S. (2002). “Pacific Salmon in
Aquatic and Terrestrial Ecosystems”. BioScience. 52 (10): 917. doi:10.1641/0006-3568(2002)052[0917:PSIAAT]2.0.CO;2. ISSN 0006-3568.
69. ^ Jump up to:a b Gagnon, Karine; Rothäusler, Eva; Syrjänen, Anneli; Yli-Renko, Maria; Jormalainen, Veijo (2013).
“Seabird Guano Fertilizes Baltic Sea Littoral Food Webs”. PLOS ONE. 8 (4): e61284. Bibcode:2013PLoSO…861284G. doi:10.1371/journal.pone.0061284. PMC 3623859. PMID 23593452.
70. ^ Mizota, Chitoshi; Noborio, Kosuke; Mori, Yoshiaki (2012). “The Great
Cormorant (Phalacrocorax carbo) colony as a “hot spot” of nitrous oxide (N2O) emission in central Japan”. Atmospheric Environment. 57: 29–34. Bibcode:2012AtmEn..57…29M. doi:10.1016/j.atmosenv.2012.02.007.
71. ^ Bird, Michael I.; Tait, Elaine;
Wurster, Christopher M.; Furness, Robert W. (2008). “Stable carbon and nitrogen isotope analysis of avian uric acid”. Rapid Communications in Mass Spectrometry. 22 (21): 3393–3400. Bibcode:2008RCMS…22.3393B. doi:10.1002/rcm.3739. PMID 18837063.
72. ^
Jump up to:a b Caut, Stéphane; Angulo, Elena; Pisanu, Benoit; Ruffino, Lise; Faulquier, Lucie; Lorvelec, Olivier; Chapuis, Jean-Louis; Pascal, Michel; Vidal, Eric; Courchamp, Franck (2012). “Seabird Modulations of Isotopic Nitrogen on Islands”. PLOS
ONE. 7 (6): e39125. Bibcode:2012PLoSO…739125C. doi:10.1371/journal.pone.0039125. PMC 3377609. PMID 22723945.
73. ^ Mulder, Christa P. H.; Anderson, Wendy B.; Towns, David R.; Bellingham, Peter J. (8 September 2011). Seabird Islands: Ecology, Invasion,
and Restoration. ISBN 9780199735693.
74. ^ McFadden, Tyler Neal; Kauffman, J. Boone; Bhomia, Rupesh K. (2016). “Effects of nesting waterbirds on nutrient levels in mangroves, Gulf of Fonseca, Honduras”. Wetlands Ecology and Management. 24 (2): 217–229.
doi:10.1007/s11273-016-9480-4. S2CID 6021420.
75. ^ Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna Małgorzata; Iliszko, Lech; Stempniewicz, Lech (2013). “Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous
seabird colonies in Spitsbergen”. Polar Biology. 36 (3): 363–372. doi:10.1007/s00300-012-1265-5. S2CID 12110520.
76. ^ Doughty, Christopher E.; Roman, Joe; Faurby, Søren; Wolf, Adam; Haque, Alifa; Bakker, Elisabeth S.; Malhi, Yadvinder; Dunning,
John B.; Svenning, Jens-Christian (2016). “Global nutrient transport in a world of giants”. Proceedings of the National Academy of Sciences. 113 (4): 868–873. Bibcode:2016PNAS..113..868D. doi:10.1073/pnas.1502549112. PMC 4743783. PMID 26504209.
77. ^
Jump up to:a b Honig, Susanna E.; Mahoney, Brenna (2016). “Evidence of seabird guano enrichment on a coral reef in Oahu, Hawaii”. Marine Biology. 163 (2). doi:10.1007/s00227-015-2808-4. S2CID 87850538.
78. ^ Kolb, GS; Ekholm, J.; Hambäck, PA (2010).
“Effects of seabird nesting colonies on algae and aquatic invertebrates in coastal waters”. Marine Ecology Progress Series. 417: 287–300. Bibcode:2010MEPS..417..287K. doi:10.3354/meps08791.
79. ^ Wainright, S. C.; Haney, J. C.; Kerr, C.; Golovkin,
A. N.; Flint, M. V. (1998). “Utilization of nitrogen derived from seabird guano by terrestrial and marine plants at St. Paul, Pribilof Islands, Bering Sea, Alaska”. Marine Biology. 131: 63–71. doi:10.1007/s002270050297. S2CID 83734364.
80. ^ Staunton
Smith, J.; Johnson, CR (1995). “Nutrient inputs from seabirds and humans on a populated coral cay”. Marine Ecology Progress Series. 124: 189–200. Bibcode:1995MEPS..124..189S. doi:10.3354/meps124189.
81. ^ Jump up to:a b c Lorrain, Anne; Houlbrèque,
Fanny; Benzoni, Francesca; Barjon, Lucie; Tremblay-Boyer, Laura; Menkes, Christophe; Gillikin, David P.; Payri, Claude; Jourdan, Hervé; Boussarie, Germain; Verheyden, Anouk; Vidal, Eric (2017). “Seabirds supply nitrogen to reef-building corals on
remote Pacific islets”. Scientific Reports. 7 (1): 3721. Bibcode:2017NatSR…7.3721L. doi:10.1038/s41598-017-03781-y. PMC 5473863. PMID 28623288. S2CID 6539261. Material was copied from this source, which is available under a Creative Commons Attribution
4.0 International License.
82. ^ Connell, Des W. (4 May 2018). Pollution in Tropical Aquatic Systems. ISBN 9781351092777.
83. ^ Hatcher, Bruce Gordon (1990). “Coral reef primary productivity. A hierarchy of pattern and process”. Trends in Ecology
& Evolution. 5 (5): 149–155. doi:10.1016/0169-5347(90)90221-X. PMID 21232343.
84. ^ Falkowski, Paul G.; Dubinsky, Zvy; Muscatine, Leonard; McCloskey, Lawrence (1993). “Population Control in Symbiotic Corals”. BioScience. 43 (9): 606–611. doi:10.2307/1312147.
JSTOR 1312147.
85. ^ Jump up to:a b Marubini, F.; Davies, P. S. (1996). “Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals”. Marine Biology. 127 (2): 319–328. doi:10.1007/BF00942117. S2CID 85085823.
86. ^
Muscatine, L. (1990) “The role of symbiotic algae in carbon and energy flux in reef corals”, Ecosystem World, 25: 75–87.
87. ^ Ferrier, M. Drew (1991). “Net uptake of dissolved free amino acids by four scleractinian corals”. Coral Reefs. 10 (4):
183–187. Bibcode:1991CorRe..10..183F. doi:10.1007/BF00336772. S2CID 25973061.
88. ^ Furla, P.; Allemand, D.; Shick, J. M.; Ferrier-Pagès, C.; Richier, S.; Plantivaux, A.; Merle, P. L.; Tambutté, S. (2005). “The Symbiotic Anthozoan: A Physiological
Chimera between Alga and Animal”. Integrative and Comparative Biology. 45 (4): 595–604. doi:10.1093/icb/45.4.595. PMID 21676806.
89. ^ Mills, Matthew M.; Lipschultz, Fredric; Sebens, Kenneth P. (2004). “Particulate matter ingestion and associated
nitrogen uptake by four species of scleractinian corals”. Coral Reefs. 23 (3): 311–323. doi:10.1007/s00338-004-0380-3. S2CID 13212636.
90. ^ Mills, M. M.; Sebens, K. P. (2004). “Ingestion and assimilation of nitrogen from benthic sediments by three
species of coral”. Marine Biology. 145 (6): 1097–1106. doi:10.1007/s00227-004-1398-3. S2CID 84698653.
91. ^ Houlbrèque, F.; Tambutté, E.; Richard, C.; Ferrier-Pagès, C. (2004). “Importance of a micro-diet for scleractinian corals”. Marine Ecology
Progress Series. 282: 151–160. Bibcode:2004MEPS..282..151H. doi:10.3354/meps282151.
92. ^ Ferrier-Pagès, C.; Witting, J.; Tambutté, E.; Sebens, K. P. (2003). “Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian
coral Stylophora pistillata”. Coral Reefs. 22 (3): 229–240. doi:10.1007/s00338-003-0312-7. S2CID 44869188.
93. ^ Marubini, Francesca; Thake, Brenda (1999). “Bicarbonate addition promotes coral growth”. Limnology and Oceanography. 44 (3): 716–720.
Bibcode:1999LimOc..44..716M. doi:10.4319/lo.1999.44.3.0716. S2CID 83654833.
94. ^ Ferrier-Pagès, C.; Leclercq, N.; Jaubert, J.; Pelegrí, SP (2000). “Enhancement of pico- and nanoplankton growth by coral exudates”. Aquatic Microbial Ecology. 21:
203–209. doi:10.3354/ame021203.
95. ^ Renegar, DA; Riegl, BM (2005). “Effect of nutrient enrichment and elevated CO2 partial pressure on growth rate of Atlantic scleractinian coral Acropora cervicornis”. Marine Ecology Progress Series. 293: 69–76.
Bibcode:2005MEPS..293…69R. doi:10.3354/meps293069.
96. ^ Jump up to:a b c d e f Atwood, Trisha B.; Hammill, Edd (2018). “The Importance of Marine Predators in the Provisioning of Ecosystem Services by Coastal Plant Communities”. Frontiers in Plant
Science. 9: 1289. doi:10.3389/fpls.2018.01289. PMC 6129962. PMID 30233626. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
97. ^ Hairston, Nelson G.; Smith, Frederick E.; Slobodkin,
Lawrence B. (1960). “Community Structure, Population Control, and Competition”. The American Naturalist. University of Chicago Press. 94 (879): 421–425. doi:10.1086/282146. ISSN 0003-0147. S2CID 84548124.
98. ^ Jump up to:a b c d Estes, James A.;
Terborgh, John; Brashares, Justin S.; Power, Mary E.; Berger, Joel; Bond, William J.; Carpenter, Stephen R.; Essington, Timothy E.; Holt, Robert D.; Jackson, Jeremy B. C.; Marquis, Robert J.; Oksanen, Lauri; Oksanen, Tarja; Paine, Robert T.; Pikitch,
Ellen K.; Ripple, William J.; Sandin, Stuart A.; Scheffer, Marten; Schoener, Thomas W.; Shurin, Jonathan B.; Sinclair, Anthony R. E.; Soulé, Michael E.; Virtanen, Risto; Wardle, David A. (2011). “Trophic Downgrading of Planet Earth”. Science. 333
(6040): 301–306. Bibcode:2011Sci…333..301E. doi:10.1126/science.1205106. PMID 21764740. S2CID 7752940.
99. ^ Zedler, Joy B.; Kercher, Suzanne (2005). “WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability”. Annual Review of
Environment and Resources. 30: 39–74. doi:10.1146/
100. ^ Waycott, M.; Duarte, C. M.; Carruthers, T. J. B.; Orth, R. J.; Dennison, W. C.; Olyarnik, S.; Calladine, A.; Fourqurean, J. W.; Heck, K. L.; Hughes, A. R.;
Kendrick, G. A.; Kenworthy, W. J.; Short, F. T.; Williams, S. L. (2009). “Accelerating loss of seagrasses across the globe threatens coastal ecosystems”. Proceedings of the National Academy of Sciences. 106 (30): 12377–12381. Bibcode:2009PNAS..10612377W.
doi:10.1073/pnas.0905620106. PMC 2707273. PMID 19587236.
101. ^ Duarte, Carlos M.; Losada, Iñigo J.; Hendriks, Iris E.; Mazarrasa, Inés; Marbà, Núria (2013). “The role of coastal plant communities for climate change mitigation and adaptation”. Nature
Climate Change. 3 (11): 961–968. Bibcode:2013NatCC…3..961D. doi:10.1038/nclimate1970.
102. ^ Paleczny, Michelle; Hammill, Edd; Karpouzi, Vasiliki; Pauly, Daniel (2015). “Population Trend of the World’s Monitored Seabirds, 1950-2010”. PLOS ONE.
10 (6): e0129342. Bibcode:2015PLoSO..1029342P. doi:10.1371/journal.pone.0129342. PMC 4461279. PMID 26058068.
103. ^ Jackson, J. B. C. (8 May 2001). “What was natural in the coastal oceans?”. Proceedings of the National Academy of Sciences. 98 (10):
5411–5418. Bibcode:2001PNAS…98.5411J. doi:10.1073/pnas.091092898. ISSN 0027-8424. PMC 33227. PMID 11344287.
104. ^ Jackson, Jeremy B. C.; Kirby, Michael X.; Berger, Wolfgang H.; Bjorndal, Karen A.; Botsford, Louis W.; Bourque, Bruce J.; Bradbury,
Roger H.; Cooke, Richard; Erlandson, Jon; Estes, James A.; Hughes, Terence P.; Kidwell, Susan; Lange, Carina B.; Lenihan, Hunter S.; Pandolfi, John M.; Peterson, Charles H.; Steneck, Robert S.; Tegner, Mia J.; Warner, Robert R. (27 July 2001). “Historical
Overfishing and the Recent Collapse of Coastal Ecosystems”. Science. American Association for the Advancement of Science (AAAS). 293 (5530): 629–637. doi:10.1126/science.1059199. ISSN 0036-8075. PMID 11474098. S2CID 1459898.
105. ^ Jump up to:a
b McCauley, Douglas J.; Pinsky, Malin L.; Palumbi, Stephen R.; Estes, James A.; Joyce, Francis H.; Warner, Robert R. (2015). “Marine defaunation: Animal loss in the global ocean”. Science. 347 (6219). doi:10.1126/science.1255641. PMID 25593191. S2CID
106. ^ Lotze, Heike K.; Worm, Boris (2009). “Historical baselines for large marine animals”. Trends in Ecology & Evolution. 24 (5): 254–262. doi:10.1016/j.tree.2008.12.004. PMID 19251340.
107. ^ Estes, James A.; Palmisano, John F. (1974).
“Sea Otters: Their Role in Structuring Nearshore Communities”. Science. 185 (4156): 1058–1060. Bibcode:1974Sci…185.1058E. doi:10.1126/science.185.4156.1058. PMID 17738247. S2CID 35892592.
108. ^ Sala, E.; Zabala, M. (1996). “Fish predation and
the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean”. Marine Ecology Progress Series. 140: 71–81. Bibcode:1996MEPS..140…71S. doi:10.3354/meps140071.
109. ^ Myers, Ransom A.; Baum, Julia K.; Shepherd, Travis
D.; Powers, Sean P.; Peterson, Charles H. (2007). “Cascading Effects of the Loss of Apex Predatory Sharks from a Coastal Ocean”. Science. 315 (5820): 1846–1850. Bibcode:2007Sci…315.1846M. doi:10.1126/science.1138657. PMID 17395829. S2CID 22332630.
110. ^
Heithaus, Michael R.; Alcoverro, Teresa; Arthur, Rohan; Burkholder, Derek A.; Coates, Kathryn A.; Christianen, Marjolijn J. A.; Kelkar, Nachiket; Manuel, Sarah A.; Wirsing, Aaron J.; Kenworthy, W. Judson; Fourqurean, James W. (2014). “Seagrasses in
the age of sea turtle conservation and shark overfishing”. Frontiers in Marine Science. 1. doi:10.3389/fmars.2014.00028.
111. ^ Coverdale, Tyler C.; Brisson, Caitlin P.; Young, Eric W.; Yin, Stephanie F.; Donnelly, Jeffrey P.; Bertness, Mark D.
(2014). “Indirect Human Impacts Reverse Centuries of Carbon Sequestration and Salt Marsh Accretion”. PLOS ONE. 9 (3): e93296. Bibcode:2014PLoSO…993296C. doi:10.1371/journal.pone.0093296. PMC 3968132. PMID 24675669.
112. ^ Wilmers, Christopher
C.; Estes, James A.; Edwards, Matthew; Laidre, Kristin L.; Konar, Brenda (2012). “Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests”. Frontiers in Ecology and the Environment. 10 (8):
409–415. doi:10.1890/110176.
113. ^ Jump up to:a b Atwood, Trisha B.; Connolly, Rod M.; Ritchie, Euan G.; Lovelock, Catherine E.; Heithaus, Michael R.; Hays, Graeme C.; Fourqurean, James W.; MacReadie, Peter I. (2015). “Predators help protect carbon
stocks in blue carbon ecosystems”. Nature Climate Change. 5 (12): 1038–1045. Bibcode:2015NatCC…5.1038A. doi:10.1038/NCLIMATE2763.
114. ^ Hughes, Brent B.; Hammerstrom, Kamille K.; Grant, Nora E.; Hoshijima, Umi; Eby, Ron; Wasson, Kerstin (11 May
2016). “Trophic cascades on the edge: fostering seagrass resilience via a novel pathway”. Oecologia. Springer Science and Business Media LLC. 182 (1): 231–241. Bibcode:2016Oecol.182..231H. doi:10.1007/s00442-016-3652-z. ISSN 0029-8549. PMID 27167224.
S2CID 15168162.
115. ^ Silvestri, Silvia; Kershaw, Francine (2010). Framing the Flow: Innovative Approaches to Understand, Protect and Value Ecosystem Services Across Linked Habitats. ISBN 9789280730654.
116. ^ Jump up to:a b c Pittman, SJ; et
al. (2021). “Seascape ecology: Identifying research priorities for an emerging ocean sustainability science”. Marine Ecology Progress Series. 663: 1–29. Bibcode:2021MEPS..663….1P. doi:10.3354/meps13661. ISSN 0171-8630. S2CID 233453217. Material
was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
117. ^ Pittman, Simon (2018). Seascape ecology. Hoboken, NJ, USA: John Wiley & Sons, Inc. ISBN 978-1-119-08443-3. OCLC 993642256.
118. ^
Steele, John H. (1978). “Some Comm Photo credit:’]