microfluidics

 

  • Many diverse advantages of this technology for microbiology are listed below: • General single cell studies including growth[84][34] • Cellular aging: microfluidic devices
    such as the “mother machine” allow tracking of thousands of individual cells for many generations until they die[84] • Microenvironmental control: ranging from mechanical environment[85] to chemical environment[86][87] • Precise spatiotemporal
    concentration gradients by incorporating multiple chemical inputs to a single device[88] • Force measurements of adherent cells or confined chromosomes: objects trapped in a microfluidic device can be directly manipulated using optical tweezers
    or other force-generating methods[89] • Confining cells and exerting controlled forces by coupling with external force-generation methods such as Stokes flow, optical tweezer, or controlled deformation of the PDMS (Polydimethylsiloxane) device[89][90][91]
    • Electric field integration[91] • Plant on a chip and plant tissue culture[92] • Antibiotic resistance: microfluidic devices can be used as heterogeneous environments for microorganisms.

  • The integration of such columns allows for experiments to be run where materials were in low availability or very expensive, like in biological analysis of proteins.

  • This reduction in reagent volumes allows for new experiments like single-cell protein analysis, which due to size limitations of prior devices, previously came with great
    difficulty.

  • Continuous-flow devices are adequate for many well-defined and simple biochemical applications, and for certain tasks such as chemical separation, but they are less suitable
    for tasks requiring a high degree of flexibility or fluid manipulations.

  • Cell behavior[edit] Main article: Microfluidic cell culture The ability to create precise and carefully controlled chemoattractant gradients makes microfluidics the ideal
    tool to study motility,[97] chemotaxis and the ability to evolve / develop resistance to antibiotics in small populations of microorganisms and in a short period of time.

  • ADE technology is a very gentle process, and it can be used to transfer proteins, high molecular weight DNA and live cells without damage or loss of viability.

  • Particle detection microfluidics[edit] One application area that has seen significant academic effort and some commercial effort is in the area of particle detection in fluids.

  • Typically, micro means one of the following features: • Small volumes (μL, nL, pL, fL) • Small size • Low energy consumption • Microdomain effects Typically microfluidic systems
    transport, mix, separate, or otherwise process fluids.

  • [114] Through the usage of fiber optic coupling, the device can be isolated from instrumentation, preventing irradiative damage and minimizing the exposure of lab personnel
    to potentially harmful radiation, something not possible on the lab scale nor with the previous standard of analysis.

  • Since the analysis of spent nuclear fuel involves extremely harsh conditions, the application of disposable and rapidly produced devices (Based on castable and/or engravable
    materials such as PDMS, PMMA, and glass[115]) is advantageous, although material integrity must be considered under specific harsh conditions.

  • [49] To tune fluid penetration in porous substrates such as paper in two and three dimensions, the pore structure, wettability and geometry of the microfluidic devices can
    be controlled while the viscosity and evaporation rate of the liquid play a further significant role.

  • Microfluidic-assisted magnetophoresis[edit] One major area of application for microfluidic devices is the separation and sorting of different fluids or cell types.

  • Integrated chips can also be fabricated from multiple different materials, including glass and polyimide which are quite different from the standard material of PDMS used
    in many different droplet-based microfluidic devices.

  • [123] Some other practical applications of integrated HPLC chips include the determination of drug presence in a person through their hair[124] and the labeling of peptides
    through reverse phase liquid chromatography.

  • These closed-channel systems are inherently difficult to integrate and scale because the parameters that govern flow field vary along the flow path making the fluid flow at
    any one location dependent on the properties of the entire system.

  • [31] micro fluid sensor Process monitoring capabilities in continuous-flow systems can be achieved with highly sensitive microfluidic flow sensors based on MEMS technology,
    which offers resolutions down to the nanoliter range.

  • [82] In addition, microfluidics-based devices, capable of continuous sampling and real-time testing of air/water samples for biochemical toxins and other dangerous pathogens,[83]
    can serve as an always-on “bio-smoke alarm” for early warning.

  • Microdroplets allow for handling miniature volumes (μl to fl) of fluids conveniently, provide better mixing, encapsulation, sorting, and sensing, and suit high throughput
    experiments.

  • Conversely, microfluidic-assisted magnetophoresis may be used to facilitate efficient mixing within microdroplets or plugs.

  • [108] Photonics Lab on a Chip (PhLOC)[edit] Due to the increase in safety concerns and operating costs of common analytic methods, the Photonics Lab on a Chip (PhLOC) is becoming
    an increasingly popular tool for the analysis of actinides and nitrates in spent nuclear waste.

  • Moreover, because each droplet can be controlled independently, these systems also have dynamic reconfigurability, whereby groups of unit cells in a microfluidic array can
    be reconfigured to change their functionality during the concurrent execution of a set of bioassays.

  • [citation needed] Open microfluidics[edit] The behavior of fluids and their control in open microchannels was pioneered around 2005 and applied in air-to-liquid sample collection[12][13]
    and chromatography.

  • This technique can be readily utilized in industrial settings where the fluid at hand already contains magnetically active material.

  • Other research has also shown that the label-free separation of cells may be possible by suspending cells in a paramagnetic fluid and taking advantage of the magneto-Archimedes
    effect.

  • This is where microfluidics can have an impact: The lithography-based production of microfluidic devices, or more likely the production of reusable molds for making microfluidic
    devices using a molding process, is limited to sizes much smaller than traditional machining.

  • Fuel cells[edit] Further information: Electroosmotic pump Microfluidic fuel cells can use laminar flow to separate the fuel and its oxidant to control the interaction of the
    two fluids without the physical barrier that conventional fuel cells require.

  • [114] Through the development of a spectrophotometric approach to analyzing spent fuel, an on-line method for measurement of reactant quantities is created, increasing the
    rate at which samples can be analyzed and thus decreasing the size of deviations detectable within reprocessing.

  • [140][144] An example in food engineering research is a novel micro-3D-printed device fabricated to research production of droplets for potential food processing industry
    use, particularly in work with enhancing emulsions.

  • These methods are being researched because they use less reactants, space, and time compared to traditional techniques such as liquid chromatography.

  • [28][79] The basic idea of microfluidic biochips is to integrate assay operations such as detection, as well as sample pre-treatment and sample preparation on one chip.

  • [29][30] Continuous-flow microfluidic operation is the mainstream approach because it is easy to implement and less sensitive to protein fouling problems.

  • The main advantage of integrating HPLC columns into microfluidic devices is the smaller form factor that can be achieved, which allows for additional features to be combined
    within one microfluidic chip.

  • However, recently other techniques for droplet manipulation have also been demonstrated using magnetic force,[45] surface acoustic waves,[46] optoelectrowetting, mechanical
    actuation,[47] etc.

  • [41] Digital microfluidics[edit] Main article: Digital microfluidics Alternatives to the above closed-channel continuous-flow systems include novel open structures, where
    discrete, independently controllable droplets are manipulated on a substrate using electrowetting.

  • [145] Paper and droplet microfluidics allow for devices that can detect small amounts of unwanted bacteria or chemicals, making them useful in food safety and analysis.

  • Each of these methods has its own associated techniques to maintain robust fluid flow which have matured over several years.

  • Techniques such as droplet microfluidics are used to create emulsions that are more controlled and complex than those created by traditional homogenization due to the precision
    of droplets that is achievable.

  • This feature makes the technology suitable for a wide variety of applications including proteomics and cell-based assays.

  • Another advantage of open microfluidics is the ability to integrate open systems with surface-tension driven fluid flow, which eliminates the need for external pumping methods
    such as peristaltic or syringe pumps.

  • [118][119] This is an important feature because different applications of HPLC microfluidic chips may call for different pressures.

  • [1] It has practical applications in the design of systems that process low volumes of fluids to achieve multiplexing, automation, and high-throughput screening.

  • [121] The coupling of HPLC-chip devices with other spectrometry methods like mass-spectrometry allow for enhanced confidence in identification of desired species, like proteins.

  • [8][9] Various kinds of microfluidic flows Microfluidic flows need only be constrained by geometrical length scale – the modalities and methods used to achieve such a geometrical
    constraint are highly dependent on the targeted application.

  • Active microfluidics refers to the defined manipulation of the working fluid by active (micro) components such as micropumps or microvalves.

  • [122] Microfluidic chips have also been created with internal delay-lines that allow for gradient generation to further improve HPLC, which can reduce the need for further
    separations.

  • Often, processes normally carried out in a lab are miniaturised on a single chip, which enhances efficiency and mobility, and reduces sample and reagent volumes.

  • [111] Measurements made with these methods have been validated at the bulk level for industrial tests,[109][112] and are observed to have a much lower variance at the micro-scale.

  • [116] The early methods had the advantage of easier detection from certain machines like those that measure fluorescence.

  • [32] Droplet-based microfluidics[edit] Main article: Droplet-based microfluidics High frame rate video showing microbubble pinch-off formation in a flow-focusing microfluidic
    device[33] Droplet-based microfluidics is a subcategory of microfluidics in contrast with continuous microfluidics; droplet-based microfluidics manipulates discrete volumes of fluids in immiscible phases with low Reynolds number and laminar
    flow regimes.

  • [51] Current applications include portable glucose detection[52] and environmental testing,[53] with hopes of reaching areas that lack advanced medical diagnostic tools.

  • [95] Other applications include various electrophoresis and liquid chromatography applications for proteins and DNA, cell separation, in particular, blood cell separation,
    protein analysis, cell manipulation and analysis including cell viability analysis[34] and microorganism capturing.

  • Various applications rely on passive fluid control using capillary forces, in the form of capillary flow modifying elements, akin to flow resistors and flow accelerators.

  • [44] Many lab-on-a-chip applications have been demonstrated within the digital microfluidics paradigm using electrowetting.

  • [143] Although these methods have benefits, they currently lack the ability to be produced at large scale that is needed for commercialization.

  • [73][74] While this does eliminate the complexity of particle functionalization, more research is needed to fully understand the magneto-Archimedes phenomenon and how it can
    be used to this end.

  • [110] Likewise, the microfluidic technology developed for the analysis of spent nuclear fuel is predicted to expand horizontally to analysis of other actinide, lanthanides,
    and transition metals with little to no modification.

  • In addition, open microfluidics eliminates the need to glue or bond a cover for devices, which could be detrimental to capillary flows.

  • Many such devices feature hydrophobic barriers on hydrophilic paper that passively transport aqueous solutions to outlets where biological reactions take place.

  • [76] Additionally, microfluidic manufacturing advances mean that makers can produce the devices in low-cost plastics[77] and automatically verify part quality.

  • Microfluidic flow enables fast sample throughput, automated imaging of large sample populations, as well as 3D capabilities.

  • [147] In addition to paper-based methods, research demonstrates droplet-based microfluidics shows promise in drastically shortening the time necessary to confirm viable bacterial
    contamination in agricultural waters in the domestic and international food industry.

  • Particle detection of small fluid-borne particles down to about 1 μm in diameter is typically done using a Coulter counter, in which electrical signals are generated when
    a weakly-conducting fluid such as in saline water is passed through a small (~100 μm diameter) pore, so that an electrical signal is generated that is directly proportional to the ratio of the particle volume to the pore volume.

 

Works Cited

[‘1. Whitesides, George M. (July 2006). “The origins and the future of microfluidics”. Nature. 442 (7101): 368–373. Bibcode:2006Natur.442..368W. doi:10.1038/nature05058. ISSN 0028-0836. PMID 16871203. S2CID 205210989.
2. ^ Terry SC, Jerman JH, Angell
JB (December 1979). “A gas chromatographic air analyzer fabricated on a silicon wafer”. IEEE Transactions on Electron Devices. 26 (12): 1880–6. Bibcode:1979ITED…26.1880T. doi:10.1109/T-ED.1979.19791. S2CID 21971431.
3. ^ Kirby BJ (2010). Micro-
and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press. Archived from the original on 2019-04-28. Retrieved 2010-02-13.
4. ^ Karniadakis GM, Beskok A, Aluru N (2005). Microflows and Nanoflows. Springer Verlag.
5. ^
Bruus H (2007). Theoretical Microfluidics. Oxford University Press.
6. ^ Shkolnikov V (2019). Principles of Microfluidics. ISBN 978-1790217281.
7. ^ Tabeling P (2005). Introduction to Microfluidics. Oxford University Press. ISBN 978-0-19-856864-3.
8. ^
Chokkalingam V, Weidenhof B, Krämer M, Maier WF, Herminghaus S, Seemann R (July 2010). “Optimized droplet-based microfluidics scheme for sol-gel reactions”. Lab on a Chip. 10 (13): 1700–1705. doi:10.1039/b926976b. PMID 20405061.
9. ^ Shestopalov
I, Tice JD, Ismagilov RF (August 2004). “Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system”. Lab on a Chip. 4 (4): 316–321. doi:10.1039/b403378g. PMID 15269797.
10. ^ Thomas DJ, McCall
C, Tehrani Z, Claypole TC (June 2017). “Three-Dimensional–Printed Laboratory-on-a-Chip With Microelectronics and Silicon Integration”. Point of Care. 16 (2): 97–101. doi:10.1097/POC.0000000000000132. S2CID 58306257.
11. ^ Melin J, van der Wijngaart
W, Stemme G (June 2005). “Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels”. Lab on a Chip. 5 (6): 682–686. doi:10.1039/b501781e. PMID 15915262.
12. ^ Frisk T, Rönnholm D, van der Wijngaart W, Stemme
G (December 2006). “A micromachined interface for airborne sample-to-liquid transfer and its application in a biosensor system”. Lab on a Chip. 6 (12): 1504–1509. doi:10.1039/B612526N. PMID 17203153.
13. ^ Frisk T, Sandström N, Eng L, van der Wijngaart
W, Månsson P, Stemme G (October 2008). “An integrated QCM-based narcotics sensing microsystem”. Lab on a Chip. 8 (10): 1648–1657. doi:10.1039/b800487k. PMID 18813386.
14. ^ Jacksén J, Frisk T, Redeby T, Parmar V, van der Wijngaart W, Stemme G, Emmer
A (July 2007). “Off-line integration of CE and MALDI-MS using a closed-open-closed microchannel system”. Electrophoresis. 28 (14): 2458–2465. doi:10.1002/elps.200600735. PMID 17577881. S2CID 16337938.
15. ^ Jump up to:a b c Berthier J, Brakke KA,
Berthier E (2016-08-01). Open Microfluidics. doi:10.1002/9781118720936. ISBN 9781118720936.
16. ^ Pfohl T, Mugele F, Seemann R, Herminghaus S (December 2003). “Trends in microfluidics with complex fluids” (PDF). ChemPhysChem. 4 (12): 1291–1298.
doi:10.1002/cphc.200300847. PMID 14714376.
17. ^ Jump up to:a b c Kaigala GV, Lovchik RD, Delamarche E (November 2012). “Microfluidics in the “open space” for performing localized chemistry on biological interfaces”. Angewandte Chemie. 51 (45):
11224–11240. doi:10.1002/anie.201201798. PMID 23111955.
18. ^ Lade, R. K.; Jochem, K. S.; Macosko, C. W.; Francis, L. F. (2018). “Capillary Coatings: Flow and Drying Dynamics in Open Microchannels”. Langmuir. 34 (26): 7624–7639. doi:10.1021/acs.langmuir.8b00811.
PMID 29787270.
19. ^ Li C, Boban M, Tuteja A (April 2017). “Open-channel, water-in-oil emulsification in paper-based microfluidic devices”. Lab on a Chip. 17 (8): 1436–1441. doi:10.1039/c7lc00114b. PMID 28322402. S2CID 5046916.
20. ^ Jump up to:a
b Casavant BP, Berthier E, Theberge AB, Berthier J, Montanez-Sauri SI, Bischel LL, et al. (June 2013). “Suspended microfluidics”. Proceedings of the National Academy of Sciences of the United States of America. 110 (25): 10111–10116. Bibcode:2013PNAS..11010111C.
doi:10.1073/pnas.1302566110. PMC 3690848. PMID 23729815.
21. ^ Guckenberger DJ, de Groot TE, Wan AM, Beebe DJ, Young EW (June 2015). “Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices”. Lab on a Chip. 15 (11): 2364–2378.
doi:10.1039/c5lc00234f. PMC 4439323. PMID 25906246.
22. ^ Truckenmüller R, Rummler Z, Schaller T, Schomburg WK (2002-06-13). “Low-cost thermoforming of micro fluidic analysis chips”. Journal of Micromechanics and Microengineering. 12 (4): 375–379.
Bibcode:2002JMiMi..12..375T. doi:10.1088/0960-1317/12/4/304. ISSN 0960-1317. S2CID 250860338.
23. ^ Jeon JS, Chung S, Kamm RD, Charest JL (April 2011). “Hot embossing for fabrication of a microfluidic 3D cell culture platform”. Biomedical Microdevices.
13 (2): 325–333. doi:10.1007/s10544-010-9496-0. PMC 3117225. PMID 21113663.
24. ^ Young EW, Berthier E, Guckenberger DJ, Sackmann E, Lamers C, Meyvantsson I, et al. (February 2011). “Rapid prototyping of arrayed microfluidic systems in polystyrene
for cell-based assays”. Analytical Chemistry. 83 (4): 1408–1417. doi:10.1021/ac102897h. PMC 3052265. PMID 21261280.
25. ^ Bouaidat S, Hansen O, Bruus H, Berendsen C, Bau-Madsen NK, Thomsen P, et al. (August 2005). “Surface-directed capillary system;
theory, experiments and applications”. Lab on a Chip. 5 (8): 827–836. doi:10.1039/b502207j. PMID 16027933. S2CID 18125405.
26. ^ Kachel S, Zhou Y, Scharfer P, Vrančić C, Petrich W, Schabel W (February 2014). “Evaporation from open microchannel grooves”.
Lab on a Chip. 14 (4): 771–778. doi:10.1039/c3lc50892g. PMID 24345870.
27. ^ Ogawa M, Higashi K, Miki N (August 2015). “Development of hydrogel microtubes for microbe culture in open environment”. 2015 37th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC). Vol. 2015. pp. 5896–5899. doi:10.1109/EMBC.2015.7319733. ISBN 978-1-4244-9271-8. PMID 26737633. S2CID 4089852.
28. ^ Jump up to:a b Konda A, Morin SA (June 2017). “Flow-directed synthesis
of spatially variant arrays of branched zinc oxide mesostructures”. Nanoscale. 9 (24): 8393–8400. doi:10.1039/C7NR02655B. PMID 28604901.
29. ^ Chang HC, Yeo L (2009). Electrokinetically Driven Microfluidics and Nanofluidics. Cambridge University
Press.
30. ^ “fluid transistor”. Archived from the original on July 8, 2011.
31. ^ Tseng TM, Li M, Freitas DN, McAuley T, Li B, Ho TY, Araci IE, Schlichtmann U (2018). “Columba 2.0: A Co-Layout Synthesis Tool for Continuous-Flow Microfluidic Biochips”.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 37 (8): 1588–1601. doi:10.1109/TCAD.2017.2760628. S2CID 49893963.
32. ^ Wu, S. “MEMS flow sensors for nano-fluidic applications”. IEEE Explore. IEEE. Retrieved 24 January
2024.
33. ^ Churchman AH (2018). “Data associated with ‘Combined flow-focus and self-assembly routes for the formation of lipid stabilized oil-shelled microbubbles'”. University of Leeds. doi:10.5518/153.
34. ^ Jump up to:a b c Chokkalingam
V, Tel J, Wimmers F, Liu X, Semenov S, Thiele J, et al. (December 2013). “Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics”. Lab on a Chip. 13 (24): 4740–4744. doi:10.1039/C3LC50945A. PMID 24185478.
S2CID 46363431.
35. ^ Jump up to:a b Chokkalingam V, Herminghaus S, Seemann R (2008). “Self-synchronizing Pairwise Production of Monodisperse Droplets by Microfluidic Step Emulsification”. Applied Physics Letters. 93 (25): 254101. Bibcode:2008ApPhL..93y4101C.
doi:10.1063/1.3050461. Archived from the original on 2013-01-13.
36. ^ Teh SY, Lin R, Hung LH, Lee AP (February 2008). “Droplet microfluidics”. Lab on a Chip. 8 (2): 198–220. doi:10.1039/B715524G. PMID 18231657. S2CID 18158748.
37. ^ Prakash M,
Gershenfeld N (February 2007). “Microfluidic bubble logic”. Science. 315 (5813): 832–835. Bibcode:2007Sci…315..832P. CiteSeerX 10.1.1.673.2864. doi:10.1126/science.1136907. PMID 17289994. S2CID 5882836.
38. ^ Tenje M, Fornell A, Ohlin M, Nilsson
J (February 2018). “Particle Manipulation Methods in Droplet Microfluidics”. Analytical Chemistry. 90 (3): 1434–1443. doi:10.1021/acs.analchem.7b01333. PMID 29188994. S2CID 46777312.
39. ^ Xi HD, Zheng H, Guo W, Gañán-Calvo AM, Ai Y, Tsao CW, et
al. (February 2017). “Active droplet sorting in microfluidics: a review”. Lab on a Chip. 17 (5): 751–771. doi:10.1039/C6LC01435F. PMID 28197601.
40. ^ Niu X, Gulati S, Edel JB, deMello AJ (November 2008). “Pillar-induced droplet merging in microfluidic
circuits”. Lab on a Chip. 8 (11): 1837–1841. doi:10.1039/b813325e. PMID 18941682.
41. ^ Samie M, Salari A, Shafii MB (May 2013). “Breakup of microdroplets in asymmetric T junctions”. Physical Review E. 87 (5): 053003. Bibcode:2013PhRvE..87e3003S.
doi:10.1103/PhysRevE.87.053003. PMID 23767616.
42. ^ Le Pesant et al., Electrodes for a device operating by electrically controlled fluid displacement, U.S. Pat. No. 4,569,575, Feb. 11, 1986.
43. ^ NSF Award Search: Advanced Search Results
44. ^
Lee J, Kim CJ (June 2000). “Surface-tension-driven microactuation based on continuous electrowetting”. Journal of Microelectromechanical Systems. 9 (2): 171–180. doi:10.1109/84.846697. ISSN 1057-7157. S2CID 25996316.
45. ^ Zhang Y, Nguyen NT (March
2017). “Magnetic digital microfluidics – a review”. Lab on a Chip. 17 (6): 994–1008. doi:10.1039/c7lc00025a. hdl:10072/344389. PMID 28220916. S2CID 5013542.
46. ^ Shilton RJ, Travagliati M, Beltram F, Cecchini M (August 2014). “Nanoliter-droplet
acoustic streaming via ultra high frequency surface acoustic waves”. Advanced Materials. 26 (29): 4941–4946. Bibcode:2014AdM….26.4941S. doi:10.1002/adma.201400091. PMC 4173126. PMID 24677370.
47. ^ Shemesh J, Bransky A, Khoury M, Levenberg S (October
2010). “Advanced microfluidic droplet manipulation based on piezoelectric actuation”. Biomedical Microdevices. 12 (5): 907–914. doi:10.1007/s10544-010-9445-y. PMID 20559875. S2CID 5298534.
48. ^ Berthier J, Brakke KA, Berthier E (2016). Open Microfluidics.
John Wiley & Sons, Inc. pp. 229–256. doi:10.1002/9781118720936.ch7. ISBN 9781118720936.
49. ^ Liu M, Suo S, Wu J, Gan Y, Ah Hanaor D, Chen CQ (March 2019). “Tailoring porous media for controllable capillary flow”. Journal of Colloid and Interface
Science. 539: 379–387. arXiv:2106.03526. Bibcode:2019JCIS..539..379L. doi:10.1016/j.jcis.2018.12.068. PMID 30594833. S2CID 58553777.
50. ^ Galindo-Rosales FJ (2017-05-26). Complex Fluid-Flows in Microfluidics. Springer. ISBN 9783319595931.
51. ^
Loo J, Ho A, Turner A, Mak WC (2019). “Integrated Printed Microfluidic Biosensors”. Trends in Biotechnology. 37 (10): 1104–1120. doi:10.1016/j.tibtech.2019.03.009. hdl:1826/15985. PMID 30992149. S2CID 119536401.
52. ^ Martinez AW, Phillips ST, Butte
MJ, Whitesides GM (2007). “Patterned paper as a platform for inexpensive, low-volume, portable bioassays”. Angewandte Chemie. 46 (8): 1318–1320. doi:10.1002/anie.200603817. PMC 3804133. PMID 17211899.
53. ^ Park TS, Yoon JY (2015-03-01). “Smartphone
Detection of Escherichia coli From Field Water Samples on Paper Microfluidics”. IEEE Sensors Journal. 15 (3): 1902. Bibcode:2015ISenJ..15.1902P. doi:10.1109/JSEN.2014.2367039. S2CID 34581378.
54. ^ DeBlois RW, Bean CP (1970). “Counting and sizing
of submicron particles by the resistive pulse technique”. Rev. Sci. Instrum. 41 (7): 909–916. Bibcode:1970RScI…41..909D. doi:10.1063/1.1684724.
55. ^ US 2656508, Wallace H. Coulter, “Means for counting particles suspended in a fluid”, published
Oct. 20, 1953
56. ^ Kasianowicz JJ, Brandin E, Branton D, Deamer DW (November 1996). “Characterization of individual polynucleotide molecules using a membrane channel”. Proceedings of the National Academy of Sciences of the United States of America.
93 (24): 13770–13773. Bibcode:1996PNAS…9313770K. doi:10.1073/pnas.93.24.13770. PMC 19421. PMID 8943010.
57. ^ Li J, Gershow M, Stein D, Brandin E, Golovchenko JA (September 2003). “DNA molecules and configurations in a solid-state nanopore microscope”.
Nature Materials. 2 (9): 611–615. Bibcode:2003NatMa…2..611L. doi:10.1038/nmat965. PMID 12942073. S2CID 7521907.
58. ^ Uram JD, Ke K, Hunt AJ, Mayer M (March 2006). “Label-free affinity assays by rapid detection of immune complexes in submicrometer
pores”. Angewandte Chemie. 45 (14): 2281–2285. doi:10.1002/anie.200502862. hdl:2027.42/50668. PMID 16506296.
59. ^ Saleh O, Sohn LL (2003). “An artificial nanopore for molecular sensing”. Nano Lett. 3 (1): 37–38. Bibcode:2003NanoL…3…37S. doi:10.1021/nl0255202.
60. ^
Sen YH, Karnik R (May 2009). “Investigating the translocation of lambda-DNA molecules through PDMS nanopores”. Analytical and Bioanalytical Chemistry. 394 (2): 437–446. doi:10.1007/s00216-008-2529-3. hdl:1721.1/51892. PMID 19050856. S2CID 7442686.
61. ^
Lewpiriyawong N, Kandaswamy K, Yang C, Ivanov V, Stocker R (December 2011). “Microfluidic characterization and continuous separation of cells and particles using conducting poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis”.
Analytical Chemistry. 83 (24): 9579–9585. doi:10.1021/ac202137y. PMID 22035423.
62. ^ Rickel JM, Dixon AJ, Klibanov AL, Hossack JA (August 2018). “A flow focusing microfluidic device with an integrated Coulter particle counter for production, counting
and size characterization of monodisperse microbubbles”. Lab on a Chip. 18 (17): 2653–2664. doi:10.1039/C8LC00496J. PMC 6566100. PMID 30070301.
63. ^ Lewpiriyawong N, Yang C (March 2012). “AC-dielectrophoretic characterization and separation of
submicron and micron particles using sidewall AgPDMS electrodes”. Biomicrofluidics. 6 (1): 12807–128079. doi:10.1063/1.3682049. PMC 3365326. PMID 22662074.
64. ^ Gnyawali V, Strohm EM, Wang JZ, Tsai SS, Kolios MC (February 2019). “Simultaneous acoustic
and photoacoustic microfluidic flow cytometry for label-free analysis”. Scientific Reports. 9 (1): 1585. Bibcode:2019NatSR…9.1585G. doi:10.1038/s41598-018-37771-5. PMC 6367457. PMID 30733497.
65. ^ Weiss AC, Krüger K, Besford QA, Schlenk M, Kempe
K, Förster S, Caruso F (January 2019). “In Situ Characterization of Protein Corona Formation on Silica Microparticles Using Confocal Laser Scanning Microscopy Combined with Microfluidics”. ACS Applied Materials & Interfaces. 11 (2): 2459–2469. doi:10.1021/acsami.8b14307.
hdl:11343/219876. PMID 30600987. S2CID 58555221.
66. ^ Munaz A, Shiddiky MJ, Nguyen NT (May 2018). “Recent advances and current challenges in magnetophoresis based micro magnetofluidics”. Biomicrofluidics. 12 (3): 031501. doi:10.1063/1.5035388.
PMC 6013300. PMID 29983837.
67. ^ Jump up to:a b Dibaji S, Rezai P (2020-06-01). “Triplex Inertia-Magneto-Elastic (TIME) sorting of microparticles in non-Newtonian fluids”. Journal of Magnetism and Magnetic Materials. 503: 166620. Bibcode:2020JMMM..50366620D.
doi:10.1016/j.jmmm.2020.166620. ISSN 0304-8853. S2CID 213233645.
68. ^ Alnaimat F, Dagher S, Mathew B, Hilal-Alnqbi A, Khashan S (November 2018). “Microfluidics Based Magnetophoresis: A Review”. Chemical Record. 18 (11): 1596–1612. doi:10.1002/tcr.201800018.
PMID 29888856. S2CID 47016122.
69. ^ Unni M, Zhang J, George TJ, Segal MS, Fan ZH, Rinaldi C (March 2020). “Engineering magnetic nanoparticles and their integration with microfluidics for cell isolation”. Journal of Colloid and Interface Science.
564: 204–215. Bibcode:2020JCIS..564..204U. doi:10.1016/j.jcis.2019.12.092. PMC 7023483. PMID 31911225.
70. ^ Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE (December 2006). “Combined microfluidic-micromagnetic separation
of living cells in continuous flow”. Biomedical Microdevices. 8 (4): 299–308. doi:10.1007/s10544-006-0033-0. PMID 17003962. S2CID 14534776.
71. ^ Jump up to:a b Pamme N (January 2006). “Magnetism and microfluidics”. Lab on a Chip. 6 (1): 24–38.
doi:10.1039/B513005K. PMID 16372066.
72. ^ Song K, Li G, Zu X, Du Z, Liu L, Hu Z (March 2020). “The Fabrication and Application Mechanism of Microfluidic Systems for High Throughput Biomedical Screening: A Review”. Micromachines. 11 (3): 297. doi:10.3390/mi11030297.
PMC 7143183. PMID 32168977.
73. ^ Gao QH, Zhang WM, Zou HX, Li WB, Yan H, Peng ZK, Meng G (2019). “Label-free manipulation via the magneto-Archimedes effect: fundamentals, methodology and applications”. Materials Horizons. 6 (7): 1359–1379. doi:10.1039/C8MH01616J.
ISSN 2051-6347. S2CID 133309954.
74. ^ Akiyama Y, Morishima K (2011-04-18). “Label-free cell aggregate formation based on the magneto-Archimedes effect”. Applied Physics Letters. 98 (16): 163702. Bibcode:2011ApPhL..98p3702A. doi:10.1063/1.3581883.
ISSN 0003-6951.
75. ^ Nguyen NT, Wereley S (2006). Fundamentals and Applications of Microfluidics. Artech House.
76. ^ DeMello AJ (July 2006). “Control and detection of chemical reactions in microfluidic systems”. Nature. 442 (7101): 394–402.
Bibcode:2006Natur.442..394D. doi:10.1038/nature05062. PMID 16871207. S2CID 4421580.
77. ^ Pawell RS, Inglis DW, Barber TJ, Taylor RA (2013). “Manufacturing and wetting low-cost microfluidic cell separation devices”. Biomicrofluidics. 7 (5): 56501.
doi:10.1063/1.4821315. PMC 3785532. PMID 24404077.
78. ^ Pawell RS, Taylor RA, Morris KV, Barber TJ (2015). “Automating microfluidic part verification”. Microfluidics and Nanofluidics. 18 (4): 657–665. doi:10.1007/s10404-014-1464-1. S2CID 96793921.
79. ^
Cheng JJ, Nicaise SM, Berggren KK, Gradečak S (January 2016). “Dimensional Tailoring of Hydrothermally Grown Zinc Oxide Nanowire Arrays”. Nano Letters. 16 (1): 753–759. Bibcode:2016NanoL..16..753C. doi:10.1021/acs.nanolett.5b04625. PMID 26708095.
80. ^
Herold KE (2009). Rasooly A (ed.). Lab-on-a-Chip Technology: Fabrication and Microfluidics. Caister Academic Press. ISBN 978-1-904455-46-2.
81. ^ Jump up to:a b Herold KE (2009). Rasooly A (ed.). Lab-on-a-Chip Technology: Biomolecular Separation
and Analysis. Caister Academic Press. ISBN 978-1-904455-47-9.
82. ^ Barrett MP, Cooper JM, Regnault C, Holm SH, Beech JP, Tegenfeldt JO, Hochstetter A (October 2017). “Microfluidics-Based Approaches to the Isolation of African Trypanosomes”. Pathogens.
6 (4): 47. doi:10.3390/pathogens6040047. PMC 5750571. PMID 28981471.
83. ^ Jing G, Polaczyk A, Oerther DB, Papautsky I (2007). “Development of a microfluidic biosensor for detection of environmental mycobacteria”. Sensors and Actuators B: Chemical.
123 (1): 614–621. doi:10.1016/j.snb.2006.07.029.
84. ^ Jump up to:a b Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, Jun S (June 2010). “Robust growth of Escherichia coli”. Current Biology. 20 (12): 1099–1103. doi:10.1016/j.cub.2010.04.045.
PMC 2902570. PMID 20537537.
85. ^ Manbachi A, Shrivastava S, Cioffi M, Chung BG, Moretti M, Demirci U, et al. (May 2008). “Microcirculation within grooved substrates regulates cell positioning and cell docking inside microfluidic channels”. Lab
on a Chip. 8 (5): 747–754. doi:10.1039/B718212K. PMC 2668874. PMID 18432345.
86. ^ Yliperttula M, Chung BG, Navaladi A, Manbachi A, Urtti A (October 2008). “High-throughput screening of cell responses to biomaterials”. European Journal of Pharmaceutical
Sciences. 35 (3): 151–160. doi:10.1016/j.ejps.2008.04.012. PMID 18586092.
87. ^ Gilbert DF, Mofrad SA, Friedrich O, Wiest J (February 2019). “Proliferation characteristics of cells cultured under periodic versus static conditions”. Cytotechnology.
71 (1): 443–452. doi:10.1007/s10616-018-0263-z. PMC 6368509. PMID 30515656.
88. ^ Chung BG, Manbachi A, Saadi W, Lin F, Jeon NL, Khademhosseini A (2007). “A gradient-generating microfluidic device for cell biology”. Journal of Visualized Experiments.
7 (7): 271. doi:10.3791/271. PMC 2565846. PMID 18989442.
89. ^ Jump up to:a b Pelletier J, Halvorsen K, Ha BY, Paparcone R, Sandler SJ, Woldringh CL, et al. (October 2012). “Physical manipulation of the Escherichia coli chromosome reveals its soft
nature”. Proceedings of the National Academy of Sciences of the United States of America. 109 (40): E2649–E2656. Bibcode:2012PNAS..109E2649P. doi:10.1073/pnas.1208689109. PMC 3479577. PMID 22984156.
90. ^ Amir A, Babaeipour F, McIntosh DB, Nelson
DR, Jun S (April 2014). “Bending forces plastically deform growing bacterial cell walls”. Proceedings of the National Academy of Sciences of the United States of America. 111 (16): 5778–5783. arXiv:1305.5843. Bibcode:2014PNAS..111.5778A. doi:10.1073/pnas.1317497111.
PMC 4000856. PMID 24711421.
91. ^ Jump up to:a b Choi JW, Rosset S, Niklaus M, Adleman JR, Shea H, Psaltis D (March 2010). “3-dimensional electrode patterning within a microfluidic channel using metal ion implantation”. Lab on a Chip. 10 (6): 783–788.
doi:10.1039/B917719A. PMID 20221568.
92. ^ Yetisen AK, Jiang L, Cooper JR, Qin Y, Palanivelu R, Zohar Y (May 2011). “A microsystem-based assay for studying pollen tube guidance in plant reproduction”. J. Micromech. Microeng. 25 (5): 054018. Bibcode:2011JMiMi..21e4018Y.
doi:10.1088/0960-1317/21/5/054018. S2CID 12989263.
93. ^ Fan H, Das C, Chen H (2009). “Two-Dimensional Electrophoresis in a Chip”. In Herold KE, Rasooly A (eds.). Lab-on-a-Chip Technology: Biomolecular Separation and Analysis. Caister Academic Press.
ISBN 978-1-904455-47-9.
94. ^ Bontoux N, Dauphinot L, Potier MC (2009). “Elaborating Lab-on-a-Chips for Single-cell Transcriptome Analysis”. In Herold KE, Rasooly A (eds.). Lab-on-a-Chip Technology: Biomolecular Separation and Analysis. Caister
Academic Press. ISBN 978-1-904455-47-9.
95. ^ Cady NC (2009). “Microchip-based PCR Amplification Systems”. Lab-on-a-Chip Technology: Biomolecular Separation and Analysis. Caister Academic Press. ISBN 978-1-904455-47-9.
96. ^ Keymer JE, Galajda
P, Muldoon C, Park S, Austin RH (November 2006). “Bacterial metapopulations in nanofabricated landscapes”. Proceedings of the National Academy of Sciences of the United States of America. 103 (46): 17290–17295. Bibcode:2006PNAS..10317290K. doi:10.1073/pnas.0607971103.
PMC 1635019. PMID 17090676.
97. ^ Hochstetter A, Stellamanns E, Deshpande S, Uppaluri S, Engstler M, Pfohl T (April 2015). “Microfluidics-based single cell analysis reveals drug-dependent motility changes in trypanosomes” (PDF). Lab on a Chip. 15
(8): 1961–1968. doi:10.1039/C5LC00124B. PMID 25756872.
98. ^ Ahmed T, Shimizu TS, Stocker R (November 2010). “Microfluidics for bacterial chemotaxis”. Integrative Biology. 2 (11–12): 604–629. doi:10.1039/C0IB00049C. hdl:1721.1/66851. PMID 20967322.
99. ^
Seymour JR, Simó R, Ahmed T, Stocker R (July 2010). “Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web”. Science. 329 (5989): 342–345. Bibcode:2010Sci…329..342S. doi:10.1126/science.1188418. PMID 20647471. S2CID
12511973.
100. ^ Galajda P, Keymer J, Chaikin P, Austin R (December 2007). “A wall of funnels concentrates swimming bacteria”. Journal of Bacteriology. 189 (23): 8704–8707. doi:10.1128/JB.01033-07. PMC 2168927. PMID 17890308.
101. ^ Angelani L,
Di Leonardo R, Ruocco G (January 2009). “Self-starting micromotors in a bacterial bath”. Physical Review Letters. 102 (4): 048104. arXiv:0812.2375. Bibcode:2009PhRvL.102d8104A. doi:10.1103/PhysRevLett.102.048104. PMID 19257480. S2CID 33943502.
102. ^
Di Leonardo R, Angelani L, Dell’arciprete D, Ruocco G, Iebba V, Schippa S, et al. (May 2010). “Bacterial ratchet motors”. Proceedings of the National Academy of Sciences of the United States of America. 107 (21): 9541–9545. arXiv:0910.2899. Bibcode:2010PNAS..107.9541D.
doi:10.1073/pnas.0910426107. PMC 2906854. PMID 20457936.
103. ^ Sokolov A, Apodaca MM, Grzybowski BA, Aranson IS (January 2010). “Swimming bacteria power microscopic gears”. Proceedings of the National Academy of Sciences of the United States of
America. 107 (3): 969–974. Bibcode:2010PNAS..107..969S. doi:10.1073/pnas.0913015107. PMC 2824308. PMID 20080560.
104. ^ Grilli S, Miccio L, Vespini V, Finizio A, De Nicola S, Ferraro P (May 2008). “Liquid micro-lens array activated by selective
electrowetting on lithium niobate substrates”. Optics Express. 16 (11): 8084–8093. Bibcode:2008OExpr..16.8084G. doi:10.1364/OE.16.008084. PMID 18545521. S2CID 15923737.
105. ^ Ferraro P, Miccio L, Grilli S, Finizio A, De Nicola S, Vespini V (2008).
“Manipulating Thin Liquid Films for Tunable Microlens Arrays”. Optics and Photonics News. 19 (12): 34. doi:10.1364/OPN.19.12.000034.
106. ^ Pégard NC, Toth ML, Driscoll M, Fleischer JW (December 2014). “Flow-scanning optical tomography”. Lab on
a Chip. 14 (23): 4447–4450. doi:10.1039/C4LC00701H. PMC 5859944. PMID 25256716.
107. ^ Pégard NC, Fleischer JW (2012). “3D microfluidic microscopy using a tilted channel”. Biomedical Optics and 3-D Imaging. pp. BM4B.4. doi:10.1364/BIOMED.2012.BM4B.4.
ISBN 978-1-55752-942-8.
108. ^ Lu CH, Pégard NC, Fleischer JW (22 April 2013). “Flow-based structured illumination”. Applied Physics Letters. 102 (16): 161115. Bibcode:2013ApPhL.102p1115L. doi:10.1063/1.4802091.
109. ^ Jump up to:a b Kirsanov,
D.; Babain, V.; Agafonova-Moroz, M.; Lumpov, A.; Legin, A. (2012-03-01). “Combination of optical spectroscopy and chemometric techniques—a possible way for on-line monitoring of spent nuclear fuel (SNF) reprocessing”. Radiochimica Acta. 100 (3): 185–188.
doi:10.1524/ract.2012.1901. S2CID 101475605.
110. ^ Jump up to:a b Nelson, Gilbert L.; Lackey, Hope E.; Bello, Job M.; Felmy, Heather M.; Bryan, Hannah B.; Lamadie, Fabrice; Bryan, Samuel A.; Lines, Amanda M. (2021-01-26). “Enabling Microscale Processing:
Combined Raman and Absorbance Spectroscopy for Microfluidic On-Line Monitoring”. Analytical Chemistry. 93 (3): 1643–1651. doi:10.1021/acs.analchem.0c04225. ISSN 0003-2700. OSTI 1783814. PMID 33337856. S2CID 229323758.
111. ^ Jump up to:a b c d e
Mattio, Elodie; Caleyron, Audrey; Miguirditchian, Manuel; Lines, Amanda M.; Bryan, Samuel A.; Lackey, Hope E.; Rodriguez-Ruiz, Isaac; Lamadie, Fabrice (May 2022). “Microfluidic In-Situ Spectrophotometric Approaches to Tackle Actinides Analysis in
Multiple Oxidation States”. Applied Spectroscopy. 76 (5): 580–589. Bibcode:2022ApSpe..76..580M. doi:10.1177/00037028211063916. ISSN 0003-7028. PMID 35108115. S2CID 246488502 – via Sage Journals.
112. ^ Jump up to:a b Bryan, S. A.; Levitskaia, Tatiana
G.; Johnsen, A. M.; Orton, C. R.; Peterson, J. M. (September 2011). “Spectroscopic monitoring of spent nuclear fuel reprocessing streams: an evaluation of spent fuel solutions via Raman, visible, and near-infrared spectroscopy”. Radiochimica Acta.
99 (9): 563–572. doi:10.1524/ract.2011.1865. ISSN 0033-8230. S2CID 95632074.
113. ^ Nelson, Gilbert L.; Lines, Amanda M.; Bello, Job M.; Bryan, Samuel A. (2019-09-27). “Online Monitoring of Solutions Within Microfluidic Chips: Simultaneous Raman
and UV–Vis Absorption Spectroscopies”. ACS Sensors. 4 (9): 2288–2295. doi:10.1021/acssensors.9b00736. ISSN 2379-3694. PMID 31434479. S2CID 201275176.
114. ^ Jump up to:a b Rodríguez-Ruiz, Isaac; Lamadie, Fabrice; Charton, Sophie (2018-02-20). “Uranium(VI)
On-Chip Microliter Concentration Measurements in a Highly Extended UV–Visible Absorbance Linearity Range”. Analytical Chemistry. 90 (4): 2456–2460. doi:10.1021/acs.analchem.7b05162. ISSN 0003-2700. PMID 29327582.
115. ^ Mattio, Elodie; Lamadie,
Fabrice; Rodriguez-Ruiz, Isaac; Cames, Beatrice; Charton, Sophie (2020-02-01). “Photonic Lab-on-a-Chip analytical systems for nuclear applications: optical performance and UV–Vis–IR material characterization after chemical exposure and gamma irradiation”.
Journal of Radioanalytical and Nuclear Chemistry. 323 (2): 965–973. doi:10.1007/s10967-019-06992-x. ISSN 1588-2780. S2CID 209441127.
116. ^ Kim JY, Cho SW, Kang DK, Edel JB, Chang SI, deMello AJ, O’Hare D (September 2012). “Lab-chip HPLC with integrated
droplet-based microfluidics for separation and high frequency compartmentalisation”. Chemical Communications. 48 (73): 9144–9146. doi:10.1039/c2cc33774f. PMID 22871959.
117. ^ Ochoa A, Álvarez-Bohórquez E, Castillero E, Olguin LF (May 2017). “Detection
of Enzyme Inhibitors in Crude Natural Extracts Using Droplet-Based Microfluidics Coupled to HPLC”. Analytical Chemistry. 89 (9): 4889–4896. doi:10.1021/acs.analchem.6b04988. PMID 28374582.
118. ^ Gerhardt RF, Peretzki AJ, Piendl SK, Belder D (December
2017). “Seamless Combination of High-Pressure Chip-HPLC and Droplet Microfluidics on an Integrated Microfluidic Glass Chip”. Analytical Chemistry. 89 (23): 13030–13037. doi:10.1021/acs.analchem.7b04331. PMID 29096060.
119. ^ Killeen K, Yin H, Sobek
D, Brennen R, Van de Goor T (October 2003). Chip-LC/MS: HPLC-MS using polymer microfluidics (PDF). 7th lnternatonal Conference on Miniaturized Chemical and Blochemlcal Analysts Systems. Proc MicroTAS. Squaw Valley, Callfornla USA. pp. 481–484.
120. ^
Vollmer M, Hörth P, Rozing G, Couté Y, Grimm R, Hochstrasser D, Sanchez JC (March 2006). “Multi-dimensional HPLC/MS of the nucleolar proteome using HPLC-chip/MS”. Journal of Separation Science. 29 (4): 499–509. doi:10.1002/jssc.200500334. PMID 16583688.
121. ^
Reichmuth DS, Shepodd TJ, Kirby BJ (May 2005). “Microchip HPLC of peptides and proteins”. Analytical Chemistry. 77 (9): 2997–3000. doi:10.1021/ac048358r. PMID 15859622.
122. ^ Hardouin J, Duchateau M, Joubert-Caron R, Caron M (2006). “Usefulness
of an integrated microfluidic device (HPLC-Chip-MS) to enhance confidence in protein identification by proteomics”. Rapid Communications in Mass Spectrometry. 20 (21): 3236–3244. Bibcode:2006RCMS…20.3236H. doi:10.1002/rcm.2725. PMID 17016832.
123. ^
Brennen RA, Yin H, Killeen KP (December 2007). “Microfluidic gradient formation for nanoflow chip LC”. Analytical Chemistry. 79 (24): 9302–9309. doi:10.1021/ac0712805. PMID 17997523.
124. ^ Zhu KY, Leung KW, Ting AK, Wong ZC, Ng WY, Choi RC, et
al. (March 2012). “Microfluidic chip based nano liquid chromatography coupled to tandem mass spectrometry for the determination of abused drugs and metabolites in human hair”. Analytical and Bioanalytical Chemistry. 402 (9): 2805–2815. doi:10.1007/s00216-012-5711-6.
PMID 22281681. S2CID 7748546.
125. ^ Polat AN, Kraiczek K, Heck AJ, Raijmakers R, Mohammed S (November 2012). “Fully automated isotopic dimethyl labeling and phosphopeptide enrichment using a microfluidic HPLC phosphochip”. Analytical and Bioanalytical
Chemistry. 404 (8): 2507–2512. doi:10.1007/s00216-012-6395-7. PMID 22975804. S2CID 32545802.
126. ^ Santiago JG. “Water Management in PEM Fuel Cells”. Stanford Microfluidics Laboratory. Archived from the original on 28 June 2008.
127. ^ Tretkoff
E (May 2005). “Building a Better Fuel Cell Using Microfluidics”. APS News. 14 (5): 3.
128. ^ Allen J. “Fuel Cell Initiative at MnIT Microfluidics Laboratory”. Michigan Technological University. Archived from the original on 2008-03-05.
129. ^
“NASA Astrobiology Strategy, 2015” (PDF). Archived from the original (PDF) on 2016-12-22.
130. ^ Beebe DJ, Mensing GA, Walker GM (2002). “Physics and applications of microfluidics in biology”. Annual Review of Biomedical Engineering. 4: 261–286.
doi:10.1146/annurev.bioeng.4.112601.125916. PMID 12117759.
131. ^ Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WT (August 2010). “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry
and biology” (PDF). Angewandte Chemie. 49 (34): 5846–5868. doi:10.1002/anie.200906653. PMID 20572214. S2CID 18609389.
132. ^ van Dinther AM, Schroën CG, Vergeldt FJ, van der Sman RG, Boom RM (May 2012). “Suspension flow in microfluidic devices–a
review of experimental techniques focussing on concentration and velocity gradients”. Advances in Colloid and Interface Science. 173: 23–34. doi:10.1016/j.cis.2012.02.003. PMID 22405541.
133. ^ Mora MF, Greer F, Stockton AM, Bryant S, Willis PA
(November 2011). “Toward total automation of microfluidics for extraterrestial [sic] in situ analysis”. Analytical Chemistry. 83 (22): 8636–8641. doi:10.1021/ac202095k. PMID 21972965.
134. ^ Chiesl TN, Chu WK, Stockton AM, Amashukeli X, Grunthaner
F, Mathies RA (April 2009). “Enhanced amine and amino acid analysis using Pacific Blue and the Mars Organic Analyzer microchip capillary electrophoresis system”. Analytical Chemistry. 81 (7): 2537–2544. doi:10.1021/ac8023334. PMID 19245228.
135. ^
Kaiser RI, Stockton AM, Kim YS, Jensen EC, Mathies RA (2013). “On the Formation of Dipeptides in Interstellar Model Ices”. The Astrophysical Journal. 765 (2): 111. Bibcode:2013ApJ…765..111K. doi:10.1088/0004-637X/765/2/111. ISSN 0004-637X. S2CID
45120615.
136. ^ Stockton AM, Tjin CC, Chiesl TN, Mathies RA (July 2011). “Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: carboxylic acids”. Astrobiology. 11 (6): 519–528. Bibcode:2011AsBio..11..519S.
doi:10.1089/ast.2011.0634. PMID 21790324.
137. ^ Stockton AM, Tjin CC, Huang GL, Benhabib M, Chiesl TN, Mathies RA (November 201 Photo credit: https://www.flickr.com/photos/31878512@N06/4413849849/’]