• [16] This event (termed primary endosymbiosis) is at the origin of the red and green algae (including the land plants or Embryophytes which emerged within them)) and the glaucophytes,
    which together make up the oldest evolutionary lineages of photosynthetic eukaryotes, the Archaeplastida.

  • [18] Red algae are divided into the Cyanidiophyceae, a class of unicellular and thermoacidophilic extremophiles found in sulphuric hot springs and other acidic environments,[19]
    an adaptation partly made possible by horizontal gene transfers from prokaryotes,[20] with about 1% of their genome having this origin,[21] and two sister clades called SCRP (Stylonematophyceae, Compsopogonophyceae, Rhodellophyceae and Porphyridiophyceae)
    and BF (Bangiophyceae and Florideophyceae), which are found in both marine and freshwater environments.

  • While some orders of red algae simply have a plug core, others have an associated membrane at each side of the protein mass, called cap membranes.

  • According to this theory, over time these endosymbiont red algae have evolved to become chloroplasts.

  • While this was formerly attributed to the presence of pigments (such as phycoerythrin) that would permit red algae to inhabit greater depths than other macroalgae by chromatic
    adaption, recent evidence calls this into question (e.g.

  • Because apical growth is the norm in red algae, most cells have two primary pit connections, one to each adjacent cell.

  • They also produce a specific type of tannin called phlorotannins, but in a lower amount than brown algae do.

  • [clarification needed] Below are other published taxonomies of the red algae using molecular and traditional alpha taxonomic data; however, the taxonomy of the red algae is
    still in a state of flux (with classification above the level of order having received little scientific attention for most of the 20th century).

  • [10] In addition, some marine species have adopted a parasitic lifestyle and may be found on closely or more distantly related red algal hosts.

  • [57] The two following case studies may be helpful to understand some of the life histories algae may display: In a simple case, such as Rhodochorton investiens: In the carposporophyte:
    a spermatium merges with a trichogyne (a long hair on the female sexual organ), which then divides to form carposporangia – which produce carpospores.

  • The life history of red algae is typically an alternation of generations that may have three generations rather than two.

  • See also: Eukaryote § Phylogeny Species of red algae[edit] Over 7,000 species are currently described for the red algae,[4] but the taxonomy is in constant flux with new species
    described each year.

  • [7] Except for two coastal cave dwelling species in the asexual class Cyanidiophyceae, there are no terrestrial species, which may be due to an evolutionary bottleneck in
    which the last common ancestor lost about 25% of its core genes and much of its evolutionary plasticity.

  • [54] Reproduction The reproductive cycle of red algae may be triggered by factors such as day length.

  • [27] Both marine and freshwater taxa are represented by free-living macroalgal forms and smaller endo/epiphytic/zoic forms, meaning they live in or on other algae, plants,
    and animals.

  • [3] A rather different example is Porphyra gardneri: In its diploid phase, a carpospore can germinate to form a filamentous “conchocelis stage”, which can also self-replicate
    using monospores.

  • The presumed red algae lie embedded in fossil mats of cyanobacteria, called stromatolites, in 1.6 billion-year-old Indian phosphorite – making them the oldest plant-like fossils
    ever found by about 400 million years.

  • [17] In addition to multicellular brown algae, it is estimated that more than half of all known species of microbial eukaryotes harbor red-alga-derived plastids.

  • [2] Two kinds of fossils resembling red algae were found sometime between 2006 and 2011 in well-preserved sedimentary rocks in Chitrakoot, central India.

  • Other algae of different origins filled a similar role in the late Paleozoic, and in more recent reefs.

  • [24] Freshwater species account for 5% of red algal diversity, but they also have a worldwide distribution in various habitats;[7] they generally prefer clean, high-flow streams
    with clear waters and rocky bottoms, but with some exceptions.

  • [43] Cell structure[edit] Red algae do not have flagella and centrioles during their entire life cycle.

  • [3] The carposporophyte may be enclosed within the gametophyte, which may cover it with branches to form a cystocarp.

  • The largest difference results from their photosynthetic metabolic pathway: algae that use HCO3 as a carbon source have less negative δ13C values than those that only use

  • Function[edit] The pit connections have been suggested to function as structural reinforcement, or as avenues for cell-to-cell communication and transport in red algae, however
    little data supports this hypothesis.

  • [49] Floridean starch (similar to amylopectin in land plants), a long term storage product, is deposited freely (scattered) in the cytoplasm.

  • “[30] Many subsequent studies provided evidence that is in agreement for monophyly in the Archaeplastida (including red algae).

  • The latter group uses the more 13C-negative CO2 dissolved in sea water, whereas those with access to atmospheric carbon reflect the more positive signature of this reserve.

  • Tetrasporophytes may also produce a carpospore, which germinates to form another tetrasporophyte.

  • [8][9] The red algae form a distinct group characterized by having eukaryotic cells without flagella and centrioles, chloroplasts that lack external endoplasmic reticulum
    and contain unstacked (stroma) thylakoids, and use phycobiliproteins as accessory pigments, which give them their red color.

  • When this happens, the living cell produces a layer of wall material that seals off the plug.

  • [4] The majority of species (6,793) are found in the Florideophyceae (class), and mostly consist of multicellular, marine algae, including many notable seaweeds.

  • [57] Carpospores may also germinate directly into thalloid gametophytes, or the carposporophytes may produce a tetraspore without going through a (free-living) tetrasporophyte

  • [45] Chloroplasts[edit] The presence of the water-soluble pigments called phycobilins (phycocyanobilin, phycoerythrobilin, phycourobilin and phycobiliviolin), which are localized
    into phycobilisomes, gives red algae their distinctive color.

  • Both of these are very similar; they produce monospores from monosporangia “just below a cross-wall in a filament”[3] and their spores are “liberated through the apex of sporangial

  • [11][12] Unlike green algae, red algae store sugars outside the chloroplasts as floridean starch, a type of starch that consists of highly branched amylopectin without amylose,[13]
    as food reserves outside their plastids.

  • The BF are macroalgae, seaweed that usually do not grow to more than about 50 cm in length, but a few species can reach lengths of 2 m.[22] Most rhodophytes are marine with
    a worldwide distribution, and are often found at greater depths compared to other seaweeds.

  • Bangiomorpha pubescens, a multicellular fossil from arctic Canada, strongly resembles the modern red alga Bangia and occurs in rocks dating to 1.05 billion years ago.

  • [51] When the salinity of the medium increases the production of floridoside is increased in order to prevent water from leaving the algal cells.


Works Cited

[‘2. N. J. Butterfield (2000). “Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes”. Paleobiology. 26 (3): 386–404. doi:10.1666/0094-8373(2000)026
<0386:BPNGNS>2.0.CO;2. ISSN 0094-8373. S2CID 36648568.
3. ^ Jump up to:a b T.M. Gibson (2018). “Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis”. Geology. 46 (2): 135–138. Bibcode:2018Geo….46..135G. doi:10.1130/G39829.1.
4. ^
Jump up to:a b c d e f g h i j k l m n o Lee, R.E. (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8.
5. ^ Jump up to:a b c Guiry, M.D.; Guiry, G.M. (2016). “Algaebase”. www.algaebase.org. Retrieved November 20,
6. ^ D. Thomas (2002). Seaweeds. Life Series. Natural History Museum, London. ISBN 978-0-565-09175-0.
7. ^ Dodds, Walter K. (Walter Kennedy), 1958- (7 May 2019). Freshwater ecology : concepts and environmental applications of limnology.
Whiles, Matt R. (Third ed.). London, United Kingdom. ISBN 9780128132555. OCLC 1096190142.
8. ^ Jump up to:a b Sheath, Robert G. (1284). “The biology of freshwater red algae”. Progress Phycological Research. 3: 89–157.
9. ^ Why don’t we live
on a red planet?
10. ^ Azua-Bustos, A; González-Silva, C; Arenas-Fajardo, C; Vicuña, R (2012). “Extreme environments as potential drivers of convergent evolution by exaptation: the Atacama Desert Coastal Range case”. Front Microbiol. 3: 426.
doi:10.3389/fmicb.2012.00426. PMC 3526103. PMID 23267354.
11. ^ Jump up to:a b W. J. Woelkerling (1990). “An introduction”. In K. M. Cole; R. G. Sheath (eds.). Biology of the Red Algae. Cambridge University Press, Cambridge. pp. 1–6. ISBN 978-0-521-34301-5.
12. ^
Campbell Biology Australian and New Zealand Edition
13. ^ Introduction to the Biology of Marine Life
14. ^ Viola, R.; Nyvall, P.; Pedersén, M. (2001). “The unique features of starch metabolism in red algae”. Proceedings of the Royal Society
of London B. 268 (1474): 1417–1422. doi:10.1098/rspb.2001.1644. PMC 1088757. PMID 11429143.
15. ^ “Algae”. autocww.colorado.edu. Archived from the original on 2012-03-15. Retrieved 2012-11-30.
16. ^ M. D. Guiry. “Rhodophyta: red algae”. National
University of Ireland, Galway. Archived from the original on 2007-05-04. Retrieved 2007-06-28.
17. ^ Gould, S.B.; Waller, R.F.; McFadden, G.I. (2008). “Plastid Evolution”. Annual Review of Plant Biology. 59: 491–517. doi:10.1146/annurev.arplant.59.032607.092915.
PMID 18315522. S2CID 30458113.
18. ^ Jump up to:a b McFadden, G.I. (2001). “Primary and Secondary Endosymbiosis and the Evolution of Plastids”. Journal of Phycology. 37 (6): 951–959. doi:10.1046/j.1529-8817.2001.01126.x. S2CID 51945442.
19. ^
Steal My Sunshine | The Scientist Magazine
20. ^ Ciniglia, C.; Yoon, H.; Pollio, A.; Bhattacharya, D. (2004). “Hidden biodiversity of the extremophilic Cyanidiales red algae”. Molecular Ecology. 13 (7): 1827–1838. doi:10.1111/j.1365-294X.2004.02180.x.
PMID 15189206. S2CID 21858509.
21. ^ Plants and animals sometimes take genes from bacteria, study of algae suggests – Sciencemag.org
22. ^ The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse
adaptive functions
23. ^ Brawley, SH (2017). “Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta)”. Proceedings of the National Academy of Sciences of the United States of
America. 114 (31): E6361–E6370. Bibcode:2017PNAS..114E6361B. doi:10.1073/pnas.1703088114. PMC 5547612. PMID 28716924.
24. ^ Norris, J. N.; Olsen, J. L. (1991). “Deep-water green algae from the Bahamas, including Cladophora vandenhoekii sp. nov.
(Cladophorales)”. Phycologia. 30 (4): 315–328. doi:10.2216/i0031-8884-30-4-315.1. ISSN 0031-8884.
25. ^ Kain, J.M.; Norton, T.A. (1990). “Marine Ecology”. In Cole, J.M.; Sheath, R.G. (eds.). Biology of the Red Algae. Cambridge, U.K.: Cambridge
University Press. pp. 377–423. ISBN 978-0521343015.
26. ^ Eloranta, P.; Kwandrans, J. (2004). “Indicator value of freshwater red algae in running waters for water quality assessment” (PDF). International Journal of Oceanography and Hydrobiology.
XXXIII (1): 47–54. ISSN 1730-413X. Archived from the original (PDF) on 2011-07-27.
27. ^ Vis, M.L.; Sheath, R.G.; Chiasson, W.B. (2008). “A survey of Rhodophyta and associated macroalgae from coastal streams in French Guiana”. Cryptogamie Algologie.
25: 161–174.
28. ^ Sheath, R.G.; Hambrook, J.A. (1990). “Freshwater Ecology”. In Cole, K.M.; Sheath, R.G. (eds.). Biology of the Red Algae. Cambridge, U.K.: Cambridge University Press. pp. 423–453. ISBN 978-0521343015.
29. ^ Goff, L.J. (1982).
“The biology of parasitic red algae”. Progress Phycological Research. 1: 289–369.
30. ^ Salomaki, E.D.; Lane, C.E. (2014). “Are all red algal parasites cut from the same cloth?”. Acta Societatis Botanicorum Poloniae. 83 (4): 369–375. doi:10.5586/asbp.2014.047.
31. ^
Adl, Sina M.; et al. (2005). “The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists”. Journal of Eukaryotic Microbiology. 52 (5): 399–451. doi:10.1111/j.1550-7408.2005.00053.x. PMID 16248873. S2CID 8060916.
32. ^
Fabien Burki; Kamran Shalchian-Tabrizi; Marianne Minge; Åsmund Skjæveland; Sergey I. Nikolaev; Kjetill S. Jakobsen; Jan Pawlowski (2007). Butler, Geraldine (ed.). “Phylogenomics Reshuffles the Eukaryotic Supergroups”. PLOS ONE. 2 (8): e790. Bibcode:2007PLoSO…2..790B.
doi:10.1371/journal.pone.0000790. PMC 1949142. PMID 17726520.
33. ^ Burki, Fabien; Inagaki, Yuji; Bråte, Jon; Archibald, John M.; Keeling, Patrick J.; Cavalier-Smith, Thomas; Sakaguchi, Miako; Hashimoto, Tetsuo; Horak, Ales; Kumar, Surendra;
Klaveness, Dag; Jakobsen, Kjetill S.; Pawlowski, Jan; Shalchian-Tabrizi, Kamran (2009). “Large-Scale Phylogenomic Analyses Reveal That Two Enigmatic Protist Lineages, Telonemia and Centroheliozoa, Are Related to Photosynthetic Chromalveolates”.
Genome Biology and Evolution. 1: 231–8. doi:10.1093/gbe/evp022. PMC 2817417. PMID 20333193.
34. ^ Cavalier-Smith, Thomas (2009). “Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree”. Biology Letters. 6 (3): 342–5. doi:10.1098/rsbl.2009.0948.
PMC 2880060. PMID 20031978.
35. ^ Rogozin, I.B.; Basu, M.K.; Csürös, M. & Koonin, E.V. (2009). “Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation
of Eukaryotes”. Genome Biology and Evolution. 1: 99–113. doi:10.1093/gbe/evp011. PMC 2817406. PMID 20333181.
36. ^ Kim, E.; Graham, L.E. & Graham, Linda E. (2008). Redfield, Rosemary Jeanne (ed.). “EEF2 analysis challenges the monophyly of Archaeplastida
and Chromalveolata”. PLOS ONE. 3 (7): e2621. Bibcode:2008PLoSO…3.2621K. doi:10.1371/journal.pone.0002621. PMC 2440802. PMID 18612431.
37. ^ Nozaki, H.; Maruyama, S.; Matsuzaki, M.; Nakada, T.; Kato, S.; Misawa, K. (2009). “Phylogenetic positions
of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes”. Molecular Phylogenetics and Evolution. 53 (3): 872–880. doi:10.1016/j.ympev.2009.08.015. PMID 19698794.
38. ^ Jump
up to:a b c G. W. Saunders & M. H. Hommersand (2004). “Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data”. American Journal of Botany. 91 (10): 1494–1507. doi:10.3732/ajb.91.10.1494. PMID 21652305.
S2CID 9925890.
39. ^ Jump up to:a b Hwan Su Yoon; K. M. Müller; R. G. Sheath; F. D. Ott & D. Bhattacharya (2006). “Defining the major lineages of red algae (Rhodophyta)” (PDF). Journal of Phycology. 42 (2): 482–492. doi:10.1111/j.1529-8817.2006.00210.x.
S2CID 27377549. Archived from the original (PDF) on 2016-03-04. Retrieved 2011-12-09.
40. ^ Robert Edward Lee (2008). Phycology. Cambridge University Press. pp. 107. ISBN 978-0-521-68277-0. Retrieved 31 January 2011.
41. ^ Muñoz-Gómez, SA;
Mejía-Franco, FG; Durnin, K; Colp, M; Grisdale, CJ; Archibald, JM; Ch, Slamovits (2017). “The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known”. Curr Biol. 27 (11): 1677–1684. doi:10.1016/j.cub.2017.04.054.
PMID 28528908.
42. ^ Goff, L. J.; Coleman, A. W. (1986). “A Novel Pattern of Apical Cell Polyploidy, Sequential Polyploidy Reduction and Intercellular Nuclear Transfer in the Red Alga Polysiphonia”. American Journal of Botany. 73 (8): 1109–1130.
43. ^ Jump up to:a b c Fritsch, F. E. (1945), The structure and reproduction of the algae, Cambridge: Cambridge Univ. Press, ISBN 0521050421, OCLC 223742770
44. ^ Janouškovec, Jan; Liu, Shao-Lun; Martone,
Patrick T.; Carré, Wilfrid; Leblanc, Catherine; Collén, Jonas; Keeling, Patrick J. (2013). “Evolution of Red Algal Plastid Genomes: Ancient Architectures, Introns, Horizontal Gene Transfer, and Taxonomic Utility of Plastid Markers”. PLOS ONE.
8 (3): e59001. Bibcode:2013PLoSO…859001J. doi:10.1371/journal.pone.0059001. PMC 3607583. PMID 23536846.
45. ^ W. J. Woelkerling (1990). “An introduction”. In K. M. Cole; R. G. Sheath (eds.). Biology of the Red Algae. Cambridge University Press,
Cambridge. pp. 1–6. ISBN 978-0-521-34301-5.
46. ^ Scott, J.; Cynthia, B.; Schornstein, K.; Thomas, J. (1980). “Ultrastructure of Cell Division and Reproductive Differentiation of Male Plants in the Florideophyceae (Rhodophyta): Cell Division
in Polysiphonia1”. Journal of Phycology. 16 (4): 507–524. doi:10.1111/j.1529-8817.1980.tb03068.x. S2CID 83062611.
47. ^ Gantt, E (1969). “Properties and Ultrastructure of Phycoerythrin From Porphyridium cruentum12”. Plant Physiology. 44 (11):
1629–1638. doi:10.1104/pp.44.11.1629. PMC 396315. PMID 16657250.
48. ^ “The Fine Structure of Algal Cells – 1st Edition”. shop.elsevier.com. Retrieved 2023-08-16.
49. ^ Tsekos, I.; Reiss, H.-D.; Orfanidis, S.; Orologas, N. (1996). “Ultrastructure
and supramolecular organization of photosynthetic membranes of some marine red algae”. New Phytologist. 133 (4): 543–551. doi:10.1111/j.1469-8137.1996.tb01923.x.
50. ^ Karsten, U.; West, J. A.; Zuccarello, G. C.; Engbrodt, R.; Yokoyama, A.;
Hara, Y.; Brodie, J. (2003). “Low Molecular Weight Carbohydrates of the Bangiophycidae (Rhodophyta)1”. Journal of Phycology. 39 (3): 584–589. doi:10.1046/j.1529-8817.2003.02192.x. S2CID 84561417.
51. ^ Lee, R. E. (1974). Chloroplast structure
and starch grain production as phylogenetic indicators in the lower Rhodophyceae. British Phycological Journal, 9(3), 291–295. doi:10.1080/00071617400650351
52. ^ Eggert, Anja; Karsten, Ulf (2010), Seckbach, Joseph; Chapman, David J. (eds.),
“Low Molecular Weight Carbohydrates in Red Algae – an Ecophysiological and Biochemical Perspective”, Red Algae in the Genomic Age, Cellular Origin, Life in Extreme Habitats and Astrobiology, Dordrecht: Springer Netherlands, vol. 13, pp. 443–456,
doi:10.1007/978-90-481-3795-4_24, ISBN 978-90-481-3795-4, retrieved 2023-08-16
53. ^ Clinton JD, Scott FM, Bowler E (November–December 1961). “A Light- and Electron-Microscopic Survey of Algal Cell Walls. I. Phaeophyta and Rhodophyta”. American
Journal of Botany. 48 (10): 925–934. doi:10.2307/2439535. JSTOR 2439535.
54. ^ Jump up to:a b Lee RE (2008). Phycology (4th ed.). Cambridge University Press. ISBN 978-0-521-63883-8.
55. ^ “Pit Plugs”. FHL Marine Botany. Retrieved 2016-06-30.
56. ^
In Archibald, J. M., In Simpson, A. G. B., & In Slamovits, C. H. (2017). Handbook of the protists.
57. ^ Tamisiea, Jack. “In a First, Tiny Crustaceans Are Found to ‘Pollinate’ Seaweed like Bees of the Sea”. Scientific American. Retrieved 2023-08-16.
58. ^
Jump up to:a b c Kohlmeyer, J. (February 1975). “New Clues to the Possible Origin of Ascomycetes”. BioScience. 25 (2): 86–93. doi:10.2307/1297108. JSTOR 1297108.
59. ^ Jump up to:a b Maberly, S. C.; Raven, J. A.; Johnston, A. M. (1992). “Discrimination
between 12C and 13C by marine plants”. Oecologia. 91 (4): 481. doi:10.1007/BF00650320. JSTOR 4220100.
60. ^ Chen, Fei; Zhang, Jiawei; Chen, Junhao; Li, Xiaojiang; Dong, Wei; Hu, Jian; Lin, Meigui; Liu, Yanhui; Li, Guowei; Wang, Zhengjia; Zhang,
Liangsheng (2018-01-01). “realDB: a genome and transcriptome resource for the red algae (phylum Rhodophyta)”. Database. 2018. doi:10.1093/database/bay072. ISSN 1758-0463. PMC 6051438. PMID 30020436.
61. ^ Matsuzaki; et al. (April 2004). “Genome
sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D”. Nature. 428 (6983): 653–657. Bibcode:2004Natur.428..653M. doi:10.1038/nature02398. PMID 15071595.
62. ^ Nozaki; et al. (2007). “A 100%-complete sequence reveals unusually
simple genomic features in the hot-spring red alga Cyanidioschyzon merolae”. BMC Biology. 5: 28. doi:10.1186/1741-7007-5-28. PMC 1955436. PMID 17623057.
63. ^ Schönknecht; et al. (March 2013). “Gene transfer from bacteria and archaea facilitated
evolution of an extremophilic eukaryote”. Science. 339 (6124): 1207–1210. Bibcode:2013Sci…339.1207S. doi:10.1126/science.1231707. PMID 23471408. S2CID 5502148.
64. ^ Nakamura; et al. (2013). “The first symbiont-free genome sequence of marine
red alga, Susabi-nori (Pyropia yezoensis)”. PLOS ONE. 8 (3): e57122. Bibcode:2013PLoSO…857122N. doi:10.1371/journal.pone.0057122. PMC 3594237. PMID 23536760.
65. ^ Collen; et al. (2013). “Genome structure and metabolic features in the red
seaweed Chondrus crispus shed light on evolution of the Archaeplastida”. PNAS. 110 (13): 5247–5252. Bibcode:2013PNAS..110.5247C. doi:10.1073/pnas.1221259110. PMC 3612618. PMID 23503846.
66. ^ Bhattacharya; et al. (2013). “Genome of the red alga
Porphyridium purpureum”. Nature Communications. 4: 1941. Bibcode:2013NatCo…4.1941B. doi:10.1038/ncomms2931. PMC 3709513. PMID 23770768.
67. ^ Brawley, SH; Blouin, NA; Ficko-Blean, E; Wheeler, GL; et al. (1 August 2017). “Insights into the
red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta)”. Proceedings of the National Academy of Sciences of the United States of America. 114 (31): E6361–E6370. Bibcode:2017PNAS..114E6361B. doi:10.1073/pnas.1703088114.
PMC 5547612. PMID 28716924.
68. ^ Ho, C.-L.; Lee, W.-K.; Lim, E.-L. (2018). “Unraveling the nuclear and chloroplast genomes of an agar producing red macroalga, Gracilaria changii (Rhodophyta, Gracilariales)”. Genomics. 110 (2): 124–133. doi:10.1016/j.ygeno.2017.09.003.
PMID 28890206.
69. ^ Qiu, H.; Price, D. C.; Weber, A. P. M.; Reeb, V.; Yang, E. C.; Lee, J. M.; Bhattacharya, D. (2013). “Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phlegrea”. Current Biology. 23 (19):
R865–R866. doi:10.1016/j.cub.2013.08.046. PMID 24112977.
70. ^ Zhou, W.; Hu, Y.; Sui, Z.; Fu, F.; Wang, J.; Chang, L.; Li, B. (2013). “Genome Survey Sequencing and Genetic Background Characterization of Gracilariopsis lemaneiformis (Rhodophyta)
Based on Next-Generation Sequencing”. PLOS ONE. 8 (7): e69909. Bibcode:2013PLoSO…869909Z. doi:10.1371/journal.pone.0069909. PMC 3713064. PMID 23875008.
71. ^ JunMo Lee, Eun Chan Yang, Louis Graf, Ji Hyun Yang, Huan Qiu, Udi Zelzion, Cheong
Xin Chan, Timothy G Stephens, Andreas P M Weber, Ga Hun Boo, Sung Min Boo, Kyeong Mi Kim, Younhee Shin, Myunghee Jung, Seung Jae Lee, Hyung-Soon Yim, Jung-Hyun Lee, Debashish Bhattacharya, Hwan Su Yoon, “Analysis of the Draft Genome of the Red
Seaweed Gracilariopsis chorda Provides Insights into Genome Size Evolution” in Rhodophyta, Molecular Biology and Evolution, Volume 35, Issue 8, August 2018, pp. 1869–1886, doi:10.1093/molbev/msy081
72. ^ Bengtson, S; Sallstedt, T; Belivanova,
V; Whitehouse, M (2017). “Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae”. PLOS Biol. 15 (3): e2000735. doi:10.1371/journal.pbio.2000735. PMC 5349422. PMID 28291791.
73. ^
Grant, S. W. F.; Knoll, A. H.; Germs, G. J. B. (1991). “Probable Calcified Metaphytes in the Latest Proterozoic Nama Group, Namibia: Origin, Diagenesis, and Implications”. Journal of Paleontology. 65 (1): 1–18. Bibcode:1991JPal…65….1G. doi:10.1017/S002233600002014X.
JSTOR 1305691. PMID 11538648. S2CID 26792772.
74. ^ Yun, Z.; Xun-lal, Y. (1992). “New data on multicellular thallophytes and fragments of cellular tissues from Late Proterozoic phosphate rocks, South China”. Lethaia. 25 (1): 1–18. doi:10.1111/j.1502-3931.1992.tb01788.x.
75. ^
Summarised in Cavalier-Smith, Thomas (April 2000). “Membrane heredity and early chloroplast evolution”. Trends in Plant Science. 5 (4): 174–182. doi:10.1016/S1360-1385(00)01598-3. PMID 10740299.
76. ^ Jump up to:a b Wang, T., Jónsdóttir, R.,
Kristinsson, H. G., Hreggvidsson, G. O., Jónsson, J. Ó., Thorkelsson, G., & Ólafsdóttir, G. (2010). “Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata”. LWT – Food Science and Technology, 43(9), 1387–1393. doi:10.1016/j.lwt.2010.05.010
77. ^
MacArtain, P.; Gill, C. I. R.; Brooks, M.; Campbell, R.; Rowland, I. R. (2007). “Nutritional Value of Edible Seaweeds”. Nutrition Reviews. 65 (12): 535–543. doi:10.1111/j.1753-4887.2007.tb00278.x. PMID 18236692. S2CID 494897.
78. ^ Becker, E.W.
(March 2007). “Micro-algae as a source of protein”. Biotechnology Advances. 25 (2): 207–210. doi:10.1016/j.biotechadv.2006.11.002. PMID 17196357.
79. ^ “Dulse: Palmaria palmata”. Quality Sea Veg. Retrieved 2007-06-28.
80. ^ T. F. Mumford &
A. Muira (1988). “Porphyra as food: cultivation and economics”. In C. A. Lembi & J. Waaland (eds.). Algae and Human Affairs. Cambridge University Press, Cambridge. ISBN 978-0-521-32115-0.
81. ^ Gressler, V., Yokoya, N. S., Fujii, M. T., Colepicolo,
P., Filho, J. M., Torres, R. P., & Pinto, E. (2010). “Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species”. Food Chemistry, 120(2), 585–590. doi:10.1016/j.foodchem.2009.10.028
82. ^ Hoek, C. van den, Mann,
D.G. and Jahns, H.M. (1995). Algae An Introduction to Phycology. Cambridge University Press, Cambridge. ISBN 0521304199
83. ^ Dhargalkar VK, Verlecar XN. “Southern Ocean Seaweeds: a resource for exploration in food and drugs”. Aquaculture 2009;
287: 229–242.
84. ^ “On the human consumption of the red seaweed dulse (Palmaria palmata (L.) Weber & Mohr)”. researchgate.net. December 2013.
85. ^ Manivannan, K., Thirumaran, G., Karthikai, D.G., Anantharaman. P., Balasubramanian, P. (2009).
“Proximate Composition of Different Group of Seaweeds from Vedalai Coastal Waters (Gulf of Mannar): Southeast Coast of India”. Middle-East J. Scientific Res., 4: 72–77.
Photo credit: https://www.flickr.com/photos/javcon117/5435522104/’]