facilitation cascade

 

  • [41] Second, while many of the best examples of facilitation cascades in applied contexts come from foundation species or ecosystem engineers that are conspicuous habitat
    dominants, practitioners should keep in mind that facilitators in a cascade can also include smaller and/or mobile organisms, such as Pollinators that have a positive effect on the reproductive success of habitat-forming vegetation, or mutualists
    such as symbiodinium in corals and mycorrhizal fungi in terrestrial plants.

  • This complex habitat has also shown how facilitation cascades can increases invasibility because non-native crabs live on and among ribbed mussels, providing a mechanisms
    to explain positive relationships between native diversity and invasion success, and the co-existence of native and invasive species through differential use of microhabitats associated with the cascade.

  • [6] A typical example of facilitation cascades in a tropical coastal ecosystem[7] Origin of concept and related terms[edit] The term facilitation cascade was coined by Altieri,
    Silliman, and Bertness during a study on New England cobblestone beaches to explain the chain of positive interactions that allow a diverse community to exist in a habitat that is otherwise characterized by substrate instability, elevated
    temperatures, and desiccation stress.

  • The concept emphasizes the hierarchical organization of nature, in which a foundation species creates the basis for an entire community by building a unique habitat, as seen
    in coral reefs, kelp beds, or hemlock forests, and then secondary interactions (e.g., competition, predation, facilitation) among inhabitants refine community composition and ecological dynamics.

  • [3] Furthermore, the species in a facilitation cascade can be candidate species for restoration due to their ability to initiate community assembly and the complex network
    of species interactions that underlie important ecosystem properties such as resilience.

  • Spatial scale can be influenced by how rapidly a foundation species grows or reproduces, as well as how long the effect of facilitation takes to impact other species within
    the system.

  • [21] Furthermore, invasive species may be able to better exploit the benefits of facilitation cascades over native species, leading to spillover effects into nearby habitats
    and further contributing to their invasion success.

  • [57] These foundation species had not recovered by 2021, and large-scale natural disasters could potentially have legacies on facilitation cascades over decades to centuries
    as a function of recovery rates of habitat forming organisms.

  • [3][39] This example is significant due to the chemical signals sent from secondary foundation species to attract the diversity of inhabitant snail to the cascade habitat.

  • For example, the facilitators within a cascade can be identified as focal or indicator species for monitoring and protection in conservation plans given that these species
    are likely to support elevated biodiversity and species abundance.

  • [3] Overview[edit] Facilitation cascades occur when prevalent foundation species,[4] or less abundant but ecologically important keystone species,[5] are involved in a hierarchy
    of positive interactions and consist of a primary facilitator which positively affects one or more secondary facilitators which support a suite of beneficiary species.

  • [10] Facilitation cascades thus represent a form of indirect interaction occurring over three or more levels, whereby one species impacts another via an intermediate species.

  • [63] Invasive species[edit] The successful establishment of a nonnative species into a new habitat may be expedited by the habitat provisioning and physical stress amelioration
    of the facilitation cascade that also promotes high native biodiversity.

  • More generally, these movements of individuals can serve as a biogeochemical or trophic link between ecosystems, leading to nutrient subsidies and feedbacks that sustain the
    foundation species that form the basis of facilitation cascades and providing the basis for meta-ecosystems.

  • [54] Finally, engineering with facilitating species in a cascade often provides complementary functions that both enhance the performance of one another and lead to beneficial
    outcomes that might not be possible with any single species.

  • For example, about half of the invertebrate biomass and abundance of invertebrates was observed to be dependent on secondary epiphyte habitats, suggesting that early estimates
    of the notably high arthropod diversity in tropical forests may in part be driven by facilitation cascades.

  • [48] Second, species that benefit from a facilitation cascade may move beyond the cascade habitat (i.e., spillover) and play an ecologically important role in adjacent habitats.

  • A facilitation cascade is a sequence of ecological interactions that occur when a species benefits a second species that in turn has a positive effect on a third species.

  • First, facilitation cascades may occur across multiple habitats through long distance interactions, and so the effectiveness of monitoring and outplanting projects may need
    to incorporate landscape-scale perspectives or risk failure if essential components of the system are left outside the project scope.

  • For examples, using artificial mimics as replacements for primary and secondary foundation species allows for isolation of specific mechanisms that are hypothesized to underlie
    the cascading effects of facilitation on local ecosystem dynamics.

  • However, harvest of primary or secondary facilitators themselves within the cascade can lead to downstream reductions in species richness, thereby weakening the overexploited
    species’ facilitative effects.

  • [7][41] Facilitation cascades can also be structured as patches on the landscape that arise either because a primary and secondary habitat-forming species co-occur in patches,
    or a secondary habitat-former exists in patches within a large continuous habitat created by the primary habitat-former.

  • First, movement of a facilitative species to a location with another facilitative species can bring together the components for a facilitation cascade.

  • [22] For highly mobile beneficiary species, such as those with more distant ontogenetic habitat shifts, large foraging ranges, or the capability of long-distance migrations,
    the reach of the facilitation cascade may be quite extensive.

  • However, only a few studies appear to have documented freshwater facilitation cascades, and it remains to be determined whether this is a function of the ecosystem structure
    or simply a reflection of historic research perspectives.

  • [1] Facilitation cascades differ from the facilitation model of succession[8] because species accumulate in the ecosystem due to the direct and indirect effects of the primary
    and secondary facilitator, whereas in the succession, early species that play a facilitative role are, over time, replaced by later-stage species.

  • Whether foundation species in a cascade are found in adjacent or nested configurations depends on whether competition for resources at some scale drives one foundation species
    to displace another.

  • [3] Within a facilitation cascade, primary and secondary foundation can increase organismal survival, species richness, niche diversity, and habitat complexity, in turn enhancing
    biodiversity.

  • [3] Classic examples Facilitation cascades are observed in all of earth’s major ecosystem types, and representative examples illustrate their widespread importance as well
    as the diversity of cascades that arise.

  • These foundation species exchange resources and benefit each other by buffering against sedimentation and nutrient inputs from the terrestrial side, and reducing wave energy
    from the open ocean.

  • [23] While these facilitative interactions within a cascade may provide relief from increasing abiotic stresses, they are also vulnerable to the impacts of climate change
    themselves.

  • [7] The structure, which is typically more complex than areas outside a facilitation cascade habitat can function as a refuge from predation refuge or physical stresses.

  • [20] Since the bivalves can provide nutrient subsidies to the seagrass, this is an example of a common structure of facilitation cascades where the secondary facilitators
    have a positive effect on primary facilitators, such that there is mutualism within the cascade.

  • [43] This can be due to the time necessary for a foundation species to reach a minimum individual or patch size to create a facilitative effect for the system, lags in the
    demographic response in the beneficiary species to the positive effects of a facilitator, or seasonality or some other temporal variability in the stress that the facilitator ameliorates.

  • Facilitation cascades can also have a strong direct effect on a number of ecological functions that arise through creation of physical structure.

  • As such, facilitation cascades are widespread through all of the earth’s major biomes with consistently positive effects on the abundance and biodiversity of associated organisms.

  • [3] Scale and ecological feedbacks Spatial configuration[edit] The primary and secondary foundation species that make up a facilitation cascade can occur in one of two spatial
    configurations.

  • In some instances there is scale dependence of the interactions, where competition over short distances leads to zonation of foundation species with distinct borders, and
    facilitation over longer distances occurs between the organisms in these zones.

  • [12] Ecosystem functioning[edit] Given the close relationship between biodiversity and ecosystem function, facilitation cascades will have strong indirect effect on ecosystem
    function due their enhancement of biodiversity.

  • Third, facilitation cascades commonly incorporate multiple Trophic levels and/or disparate taxonomic and functional groups, and so restoration projects (or investigations
    for that matter) need to take a community-wide approach to their design.

  • [59] In other instances, eutrophication can lead to an outright replacement of habitat dominants, such as when macroalgae replaces corals on reefs, leading to a change or
    loss in components of a facilitation cascade and there a shift in the broader community.

  • [26] This example is notable because it involves a foundation species (mangroves) increasing their facilitative effect by aggregating a drifting secondary species from nearby
    rocky reefs.

  • The most immediately obvious benefit is the provision of additional habitat that provides living spaces for more and different organisms.

  • [56] However, stresses imposed by a threat may, beyond a certain threshold, have detrimental impacts on foundation species, and thereby lead to breakdown of the facilitation
    cascade.

  • [7][50] Ecological significance Biodiversity[edit] Facilitation cascades have strong positive effects on biodiversity at local or patch scale via direct and indirect facilitation.

  • Nutrient pollution may initially appear to benefit facilitation cascades by stimulating growth of habitat forming species, but ultimately negative effects associated with
    excess biomass, such as physically smothering and biogeochemical stressors including oxygen depletion and sulfide toxicity, can overwhelm the facilitation cascade.

  • [30][31][32] This example is notable because the secondary habitat-forming seaweed is invasive in this region.

 

Works Cited

[‘1. Altieri, A. H., Silliman, B. R., Bertness, M. D. (February 2007). “Hierarchical Organization via a Facilitation Cascade in Intertidal Cordgrass Bed Communities”. The American Naturalist. The University of Chicago Press. 169 (2): 195–206. doi:10.1086/510603.
eISSN 1537-5323. ISSN 0003-0147. PMID 17211804. S2CID 3130063.
2. ^ Jump up to:a b c d Thomsen, M. S., Wernberg, T., Altieri, A., Tuya, F., Gulbransen, D., McGlathery, K. J., Holmer, M., Silliman, B. R. (1 August 2010). “Habitat Cascades: The Conceptual
Context and Global Relevance of Facilitation Cascades via Habitat Formation and Modification”. Integrative and Comparative Biology. 50 (2): 158–175. doi:10.1093/icb/icq042. ISSN 1540-7063. PMID 21558196.
3. ^ Jump up to:a b c d e f g Thomsen, M.
S., Altieri, A. H., Angelini, C., Bishop, M. J., Gribben, P. E., Lear, G., He, Q., Schiel, D. R., Silliman, B. R., South, P. M., Watson, D. M., Wernberg, T., Zotz, G. (April 2018). “Secondary foundation species enhance biodiversity”. Nature Ecology
& Evolution. Nature Publishing Group. 2 (4): 634–639. doi:10.1038/s41559-018-0487-5. ISSN 2397-334X. PMID 29507379. S2CID 4191686.
4. ^ Dayton, P. K. (1972), Toward an understanding of community resilience and the potential effects of enrichments
to the benthos at McMurdo Sound, Antarctica, Blacksberg, VA
5. ^ Paine, R. T. (January 1969). “A Note on Trophic Complexity and Community Stability”. The American Naturalist. 103 (929): 91–93. doi:10.1086/282586. eISSN 1537-5323. ISSN 0003-0147.
S2CID 83780992.
6. ^ Thomsen, M. S., Hildebrand, T., South, P. M., Foster, T., Siciliano, A., Oldach, E., Schiel, D. R. (November 2016). “A sixth-level habitat cascade increases biodiversity in an intertidal estuary”. Ecology and Evolution. 6 (22):
8291–8303. doi:10.1002/ece3.2499. ISSN 2045-7758. PMC 5108278. PMID 27878096.
7. ^ Jump up to:a b c d Gribben, P. E., Angelini, C., Altieri, A. H., Bishop, M. J., Thomsen, M. S., Bulleri, F. (2 August 2019). “Facilitation Cascades in Marine Ecosystems:
A Synthesis and Future Directions”. In Hawkins, S. J., Allcock, A. L., Bates, A. E., Firth, L. B., Smith, I. P., Swearer, S. E., Todd, P. A. (eds.). Oceanography and Marine Biology (1st ed.). CRC Press. pp. 127–168. doi:10.1201/9780429026379-3. ISBN
978-0-429-02637-9. S2CID 202193863.
8. ^ Connell, J. H., Slatyer, R. O. (1 November 1977). “Mechanisms of Succession in Natural Communities and Their Role in Community Stability and Organization”. The American Naturalist. The University of Chicago
Press. 111 (982): 1119–1144. doi:10.1086/283241. ISSN 0003-0147. S2CID 3587878.
9. ^ Bruno, J. F., Bertness, M. D. (2001). “Marine Community Ecology”. In Bertness, M. D., Gaines, S. D., Hay, M. E. (eds.). Habitat modification and facilitation in
benthic marine communities. Sinauer Associates. pp. 201–218.
10. ^ Jones, C. G., Lawton, J. H., Shachak, M. (1997). “Positive and negative effects of organisms as physical ecosystem engineers”. Ecology. Wiley Online Library. 78 (7): 1946–1957. doi:10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2.
11. ^
Menge, B. A. (February 1995). “Indirect Effects in Marine Rocky Intertidal Interaction Webs: Patterns and Importance”. Ecological Monographs. 65 (1): 21–74. Bibcode:1995EcoM…65…21M. doi:10.2307/2937158. ISSN 0012-9615. JSTOR 2937158.
12. ^ Jump
up to:a b Thomsen, M. S., Altieri, A. H., Angelini, C., Bishop, M. J., Bulleri, F., Farhan, R., Frühling, V. M. M., Gribben, P. E., Harrison, S. B., He, Q., Klinghardt, M., Langeneck, J., Lanham, B. S., Mondardini, L., Mulders, Y., Oleksyn, S., Ramus,
A. P., Schiel, D. R., Schneider, T., Siciliano, A., Silliman, B. R., Smale, D. A., South, P. M., Wernberg, T., Zhang, S., Zotz, G. (31 January 2022). “Heterogeneity within and among co-occurring foundation species increases biodiversity”. Nature Communications.
Nature Publishing Group. 13 (1): 581. Bibcode:2022NatCo..13..581T. doi:10.1038/s41467-022-28194-y. ISSN 2041-1723. PMC 8803935. PMID 35102155.
13. ^ Furukawa, K., Wolanski, E., Mueller, H. (1997). “Currents and sediment transport in mangrove forests”.
Estuarine, Coastal and Shelf Science. Elsevier. 44 (3): 301–310. Bibcode:1997ECSS…44..301F. doi:10.1006/ecss.1996.0120.
14. ^ Golbuu, Y., Victor, S., Wolanski, E., Richmond, R. H. (2003). “Trapping of fine sediment in a semi-enclosed bay, Palau,
Micronesia”. Estuarine, Coastal and Shelf Science. Elsevier. 57 (5–6): 941–949. Bibcode:2003ECSS…57..941G. doi:10.1016/S0272-7714(02)00424-9.
15. ^ Graham, N. A., Nash, K. L. (2013). “The importance of structural complexity in coral reef ecosystems”.
Coral Reefs. Springer. 32 (2): 315–326. Bibcode:2013CorRe..32..315G. doi:10.1007/s00338-012-0984-y. S2CID 253809252.
16. ^ Jump up to:a b Gillis, L. G., Bouma, T. J., Jones, C. G., Van Katwijk, M. M., Nagelkerken, I., Jeuken, C. J. L., Herman, P.
M. J., Ziegler, A. D. (2014). “Potential for landscape-scale positive interactions among tropical marine ecosystems”. Marine Ecology Progress Series. 503: 289–303. Bibcode:2014MEPS..503..289G. doi:10.3354/meps10716. hdl:2066/128103. S2CID 3420254.
17. ^
Ogden, J. C. (1988), The influence of adjacent systems on the structure and function of coral reefs
18. ^ Orth, R. J., Heck, K. L., Montfrans, J. van (1984). “Faunal communities in seagrass beds: a review of the influence of plant structure and
prey characteristics on predator-prey relationships”. Estuaries. Springer. 7 (4): 339–350. doi:10.2307/1351618. JSTOR 1351618. S2CID 85115078.
19. ^ Irlandi, E. A., Peterson, C. H. (1991). “Modification of animal habitat by large plants: mechanisms
by which seagrasses influence clam growth”. Oecologia. Springer. 87 (3): 307–318. Bibcode:1991Oecol..87..307I. doi:10.1007/BF00634584. PMID 28313255. S2CID 20667319.
20. ^ Gribben, P. E., Kimbro, D. L., Vergés, A., Gouhier, T. C., Burrell, S., Garthwin,
R. G., Cagigas, M. L., Tordoff, Y., Poore, A. G. (2017). “Positive and negative interactions control a facilitation cascade”. Ecosphere. Wiley Online Library. 8 (12): e02065. Bibcode:2017Ecosp…8E2065G. doi:10.1002/ecs2.2065.
21. ^ Jump up to:a
b c Altieri, A. H., Wesenbeeck, B. K. van, Bertness, M. D., Silliman, B. R. (May 2010). “Facilitation cascade drives positive relationship between native biodiversity and invasion success”. Ecology. 91 (5): 1269–1275. Bibcode:2010Ecol…91.1269A.
doi:10.1890/09-1301.1. ISSN 0012-9658. PMID 20503860.
22. ^ Jump up to:a b c Altieri, A. H., Irving, A. D. (21 February 2017). “Species coexistence and the superior ability of an invasive species to exploit a facilitation cascade habitat”. PeerJ.
5: e2848. doi:10.7717/peerj.2848. ISSN 2167-8359. PMC 5322755. PMID 28243523.
23. ^ Jump up to:a b Angelini, C., Griffin, J. N., Koppel, J. van de, Lamers, L. P. M., Smolders, A. J. P., Derksen-Hooijberg, M., Heide, T. van der, Silliman, B. R. (18
August 2016). “A keystone mutualism underpins resilience of a coastal ecosystem to drought”. Nature Communications. 7 (1): 12473. Bibcode:2016NatCo…712473A. doi:10.1038/ncomms12473. ISSN 2041-1723. PMC 4992128. PMID 27534803.
24. ^ Jump up to:a
b Meyer, D. L., Townsend, E. C., Thayer, G. W. (1997). “Stabilization and erosion control value of oyster cultch for intertidal marsh”. Restoration Ecology. Wiley Online Library. 5 (1): 93–99. Bibcode:1997ResEc…5…93M. doi:10.1046/j.1526-100X.1997.09710.x.
S2CID 85147438.
25. ^ Scyphers, S. B., Powers, S. P., Jr, K. L. H., Byron, D. (5 August 2011). “Oyster Reefs as Natural Breakwaters Mitigate Shoreline Loss and Facilitate Fisheries”. PLOS ONE. Public Library of Science. 6 (8): e22396. Bibcode:2011PLoSO…622396S.
doi:10.1371/journal.pone.0022396. ISSN 1932-6203. PMC 3151262. PMID 21850223.
26. ^ Jump up to:a b Bishop, M. J., Fraser, J., Gribben, P. E. (2013). “Morphological traits and density of foundation species modulate a facilitation cascade in Australian
mangroves”. Ecology. Wiley Online Library. 94 (9): 1927–1936. Bibcode:2013Ecol…94.1927B. doi:10.1890/12-1847.1. hdl:10453/26505. PMID 24279264.
27. ^ McKenzie, P. F., Bellgrove, A. (2008). “Dispersal of hormosira banksii (phaeophyceae) via detached
fragments: reproductive viability and longevity”. Journal of Phycology. Wiley Online Library. 44 (5): 1108–1115. Bibcode:2008JPcgy..44.1108M. doi:10.1111/j.1529-8817.2008.00563.x. PMID 27041707. S2CID 7747.
28. ^ Thomsen, M. S., McGlathery, K. (1
January 2005). “Facilitation of macroalgae by the sedimentary tube forming polychaete Diopatra cuprea”. Estuarine, Coastal and Shelf Science. 62 (1): 63–73. Bibcode:2005ECSS…62…63T. doi:10.1016/j.ecss.2004.08.007. ISSN 0272-7714.
29. ^ Kollars,
N. M., Byers, J. E., Sotka, E. E. (8 March 2016). “Invasive décor: an association between a native decorator worm and a non-native seaweed can be mutualistic”. Marine Ecology Progress Series. 545: 135–145. Bibcode:2016MEPS..545..135K. doi:10.3354/meps11602.
eISSN 1616-1599. ISSN 0171-8630.
30. ^ Everett, R. A. (1994). “Macroalgae in marine soft-sediment communities: effects on benthic faunal assemblages”. Journal of Experimental Marine Biology and Ecology. Elsevier. 175 (2): 253–274. doi:10.1016/0022-0981(94)90030-2.
31. ^
Raffaelli, D. G., Raven, J. A., Poole, L. J. (1998). “Oceanography and Marine Biology: an Annual Review”. Ecological Impacts of green macroalgal blooms. Vol. 36. pp. 97–125.
32. ^ Ramus, A. P., Silliman, B. R., Thomsen, M. S., Long, Z. T. (8 August
2017). “An invasive foundation species enhances multifunctionality in a coastal ecosystem”. Proceedings of the National Academy of Sciences. 114 (32): 8580–8585. Bibcode:2017PNAS..114.8580R. doi:10.1073/pnas.1700353114. PMC 5558999. PMID 28716918.
33. ^
Thomsen, M. S., McGlathery, K. J., Tyler, A. C. (1 June 2006). “Macroalgal distribution patterns in a shallow, soft-bottom lagoon, with emphasis on the nonnativeGracilaria vermiculophylla andCodium fragile”. Estuaries and Coasts. 29 (3): 465–473.
doi:10.1007/BF02784994. ISSN 1559-2731. S2CID 19120702.
34. ^ Ellwood, M. D., Foster, W. A. (2004). “Doubling the estimate of invertebrate biomass in a rainforest canopy”. Nature. Nature Publishing Group. 429 (6991): 549–551. Bibcode:2004Natur.429..549E.
doi:10.1038/nature02560. PMID 15175749. S2CID 4417165.
35. ^ Ellwood, M. D., Jones, D. T., Foster, W. A. (2002). “Canopy ferns in lowland dipterocarp forest support a prolific abundance of ants, termites, and other invertebrates 1”. Biotropica.
Wiley Online Library. 34 (4): 575–583. Bibcode:2002Biotr..34..575E. doi:10.1111/j.1744-7429.2002.tb00576.x. S2CID 85739139.
36. ^ Angelini, C., Silliman, B. R. (2014). “Secondary foundation species as drivers of trophic and functional diversity:
evidence from a tree–epiphyte system”. Ecology. 95 (1): 185–196. Bibcode:2014Ecol…95..185A. doi:10.1890/13-0496.1. ISSN 1939-9170. PMID 24649658.
37. ^ Jump up to:a b Watson, D. M. (2002). “Effects of mistletoe on diversity: a case-study from
southern New South Wales”. Emu. CSIRO PUBLISHING. 102 (3): 275–281. doi:10.1071/mu01042. ISSN 1448-5540. S2CID 9775558.
38. ^ Jump up to:a b c Watson, D. M. (2016). “Fleshing out facilitation – reframing interaction networks beyond top-down versus
bottom-up”. New Phytologist. 211 (3): 803–808. doi:10.1111/nph.14052. ISSN 1469-8137. PMID 27322844.
39. ^ Jump up to:a b Mormul, R. P., Thomaz, S. M., Da Silveira, M. J., Rodrigues, L. (2010). “Epiphyton or macrophyte: which primary producer attracts
the snail Hebetancylus moricandi?”. American Malacological Bulletin. BioOne. 28 (2): 127–133. doi:10.4003/006.028.0205. S2CID 85920752.
40. ^ Angelini, C., Altieri, A. H., Silliman, B. R., Bertness, M. D. (1 October 2011). “Interactions among Foundation
Species and Their Consequences for Community Organization, Biodiversity, and Conservation”. BioScience. Oxford Academic. 61 (10): 782–789. doi:10.1525/bio.2011.61.10.8. ISSN 0006-3568. S2CID 19106579.
41. ^ Jump up to:a b Koppel, J. van de, Heide,
T. van der, Altieri, A. H., Eriksson, B. K., Bouma, T. J., Olff, H., Silliman, B. R. (3 January 2015). “Long-Distance Interactions Regulate the Structure and Resilience of Coastal Ecosystems” (PDF). Annual Review of Marine Science. 7 (1): 139–158.
Bibcode:2015ARMS….7..139V. doi:10.1146/annurev-marine-010814-015805. eISSN 1941-0611. ISSN 1941-1405. PMID 25251274.
42. ^ Crotty, S. M., Sharp, S. J., Bersoza, A. C., Prince, K. D., Cronk, K., Johnson, E. E., Angelini, C. (2018). “Foundation
species patch configuration mediates salt marsh biodiversity, stability and multifunctionality”. Ecology Letters. Wiley Online Library. 21 (11): 1681–1692. Bibcode:2018EcolL..21.1681C. doi:10.1111/ele.13146. PMID 30141246. S2CID 52074922.
43. ^
Jump up to:a b Altieri, A. H., Van De Koppel, J. (2013). “Foundation species in marine ecosystems”. Marine Community Ecology and Conservation. Sinauer Associates, Sunderland, CA: 37–56.
44. ^ Ahas, R., Aasa, A. (1 September 2006). “The effects of
climate change on the phenology of selected Estonian plant, bird and fish populations”. International Journal of Biometeorology. 51 (1): 17–26. Bibcode:2006IJBm…51…17A. doi:10.1007/s00484-006-0041-z. ISSN 1432-1254. PMID 16738902. S2CID 30228629.
45. ^
Forrest, J. R. (2016). “Complex responses of insect phenology to climate change”. Current Opinion in Insect Science. Elsevier. 17: 49–54. doi:10.1016/j.cois.2016.07.002. PMID 27720073.
46. ^ Kevan, P. G., Baker, H. G. (1983). “Insects as flower
visitors and pollinators”. Annual Review of Entomology. Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA. 28 (1): 407–453. doi:10.1146/annurev.en.28.010183.002203.
47. ^ Osborne, J. L., Clark, S. J., Morris, R. J.,
Williams, I. H., Riley, J. R., Smith, A. D., Reynolds, D. R., Edwards, A. S. (1999). “A landscape‐scale study of bumble bee foraging range and constancy, using harmonic radar”. Journal of Applied Ecology. Wiley Online Library. 36 (4): 519–533. doi:10.1046/j.1365-2664.1999.00428.x.
S2CID 83653087.
48. ^ Jump up to:a b Bishop, M. J., Byers, J. E., Marcek, B. J., Gribben, P. E. (2012). “Density‐dependent facilitation cascades determine epifaunal community structure in temperate Australian mangroves”. Ecology. Wiley Online Library.
93 (6): 1388–1401. doi:10.1890/10-2296.1. PMID 22834379.
49. ^ Green, A. L., Maypa, A. P., Almany, G. R., Rhodes, K. L., Weeks, R., Abesamis, R. A., Gleason, M. G., Mumby, P. J., White, A. T. (2015). “Larval dispersal and movement patterns of coral
reef fishes, and implications for marine reserve network design”. Biological Reviews. Wiley Online Library. 90 (4): 1215–1247. doi:10.1111/brv.12155. PMID 25423947. S2CID 32966189.
50. ^ Loreau, M., Mouquet, N., Holt, R. D. (2003). “Meta‐ecosystems:
a theoretical framework for a spatial ecosystem ecology”. Ecology Letters. Wiley Online Library. 6 (8): 673–679. doi:10.1046/j.1461-0248.2003.00483.x.
51. ^ Zhang, Y., Silliman, B. (26 February 2019). “A Facilitation Cascade Enhances Local Biodiversity
in Seagrass Beds”. Diversity. 11 (3): 30. doi:10.3390/d11030030. ISSN 1424-2818.
52. ^ Ellison, A. M., Farnsworth, E. J., Twilley, R. R. (1996). “Facultative mutualism between red mangroves and root‐fouling sponges in Belizean mangal”. Ecology.
Wiley Online Library. 77 (8): 2431–2444. Bibcode:1996Ecol…77.2431E. doi:10.2307/2265744. JSTOR 2265744.
53. ^ Jump up to:a b Angelini, C., Heide, T. van der, Griffin, J. N., Morton, J. P., Derksen-Hooijberg, M., Lamers, L. P. M., Smolders, A.
J. P., Silliman, B. R. (22 July 2015). “Foundation species’ overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes”. Proceedings of the Royal Society B: Biological Sciences.
Royal Society. 282 (1811): 20150421. doi:10.1098/rspb.2015.0421. PMC 4528541. PMID 26136442. S2CID 18169794.
54. ^ Jump up to:a b Zee, E. M. van der, Angelini, C., Govers, L. L., Christianen, M. J. A., Altieri, A. H., Reijden, K. J. van der, Silliman,
B. R., Koppel, J. van de, Geest, M. van der, Gils, J. A. van, Veer, H. W. van der, Piersma, T., Ruiter, P. C. de, Olff, H., Heide, T. van der (16 March 2016). “How habitat-modifying organisms structure the food web of two coastal ecosystems”. Proceedings
of the Royal Society B: Biological Sciences. Royal Society. 283 (1826): 20152326. doi:10.1098/rspb.2015.2326. PMC 4810843. PMID 26962135.
55. ^ Jump up to:a b Bertness, M. D., Callaway, R. (1 May 1994). “Positive interactions in communities”. Trends
in Ecology & Evolution. 9 (5): 191–193. doi:10.1016/0169-5347(94)90088-4. ISSN 0169-5347. PMID 21236818.
56. ^ He, Q., Bertness, M. D., Altieri, A. H. (May 2013). Vila, M. (ed.). “Global shifts towards positive species interactions with increasing
environmental stress”. Ecology Letters. 16 (5): 695–706. Bibcode:2013EcolL..16..695H. doi:10.1111/ele.12080. ISSN 1461-023X. PMID 23363430.
57. ^ Thomsen, M. S., Metcalfe, I., Siciliano, A., South, P. M., Gerrity, S., Alestra, T., Schiel, D. R.
(1 May 2020). “Earthquake-driven destruction of an intertidal habitat cascade”. Aquatic Botany. 164: 103217. doi:10.1016/j.aquabot.2020.103217. ISSN 0304-3770. S2CID 213749914.
58. ^ Thomsen, M. S., Mondardini, L., Thoral, F., Gerber, D., Montie,
S., South, P. M., Tait, L., Orchard, S., Alestra, T., Schiel, D. R. (2021). “Cascading impacts of earthquakes and extreme heatwaves have destroyed populations of an iconic marine foundation species”. Diversity and Distributions. 27 (12): 2369–2383.
Bibcode:2021DivDi..27.2369T. doi:10.1111/ddi.13407. ISSN 1472-4642. S2CID 239700184.
59. ^ Thomsen, M. S., Wernberg, T., Engelen, A. H., Tuya, F., Vanderklift, M. A., Holmer, M., McGlathery, K. J., Arenas, F., Kotta, J., Silliman, B. R. (10 January
2012). “A Meta-Analysis of Seaweed Impacts on Seagrasses: Generalities and Knowledge Gaps”. PLOS ONE. Public Library of Science. 7 (1): e28595. Bibcode:2012PLoSO…728595T. doi:10.1371/journal.pone.0028595. ISSN 1932-6203. PMC 3254607. PMID 22253693.
60. ^
Roth, F., El-Khaled, Y. C., Karcher, D. B., Rädecker, N., Carvalho, S., Duarte, C. M., Silva, L., Calleja, M. Ll., Morán, X. A. G., Jones, B. H., Voolstra, C. R., Wild, C. (July 2021). “Nutrient pollution enhances productivity and framework dissolution
in algae- but not in coral-dominated reef communities”. Marine Pollution Bulletin. 168: 112444. Bibcode:2021MarPB.16812444R. doi:10.1016/j.marpolbul.2021.112444. hdl:1885/282868. ISSN 0025-326X. PMID 33984578. S2CID 234496495.
61. ^ Keesing, F.,
Belden, L. K., Daszak, P., Dobson, A., Harvell, C. D., Holt, R. D., Hudson, P., Jolles, A., Jones, K. E., Mitchell, C. E., Myers, S. S., Bogich, T., Ostfeld, R. S. (December 2010). “Impacts of biodiversity on the emergence and transmission of infectious
diseases”. Nature. 468 (7324): 647–652. Bibcode:2010Natur.468..647K. doi:10.1038/nature09575. eISSN 1476-4687. ISSN 0028-0836. PMC 7094913. PMID 21124449.
62. ^ Morton, J. P., Silliman, B. R., Lafferty, K. D. (2020). “Marine Disease Ecology”. Disease
can shape marine ecosystems. pp. 61–70.
63. ^ Ulyshen, M. D. (1 May 2011). “Arthropod vertical stratification in temperate deciduous forests: Implications for conservation-oriented management”. Forest Ecology and Management. 261 (9): 1479–1489.
doi:10.1016/j.foreco.2011.01.033. ISSN 0378-1127.
64. ^ Thomsen, M. S., Alestra, T., Brockerhoff, D., Lilley, S. A., South, P. M., Schiel, D. R. (13 October 2018). “Modified kelp seasonality and invertebrate diversity where an invasive kelp co-occurs
with native mussels”. Marine Biology. 165 (10): 173. doi:10.1007/s00227-018-3431-y. ISSN 1432-1793. S2CID 253767087.
65. ^ Bruno, J. F., Stachowicz, J. J., Bertness, M. D. (1 March 2003). “Inclusion of facilitation into ecological theory”. Trends
in Ecology & Evolution. 18 (3): 119–125. doi:10.1016/S0169-5347(02)00045-9. ISSN 0169-5347.
66. ^ Byers, J. E., Cuddington, K., Jones, C. G., Talley, T. S., Hastings, A., Lambrinos, J. G., Crooks, J. A., Wilson, W. G. (2006). “Using ecosystem engineers
to restore ecological systems”. Trends in Ecology & Evolution. Elsevier. 21 (9): 493–500. doi:10.1016/j.tree.2006.06.002. PMID 16806576.
67. ^ Halpern, B. S., Silliman, B. R., Olden, J. D., Bruno, J. P., Bertness, M. D. (2007). “Incorporating positive
interactions in aquatic restoration and conservation”. Frontiers in Ecology and the Environment. 5 (3): 153–160. doi:10.1890/1540-9295(2007)5[153:IPIIAR]2.0.CO;2. ISSN 1540-9309.
68. ^ Goff, M. (2008), Effect of Habitat Enhancement on Urban Seawall
Ecology, Technical report, University of Washington, School of Aquatic and Fishery …
69. ^ Angelini, C., Silliman, B. R. (January 2012). “Patch size-dependent community recovery after massive disturbance”. Ecology. 93 (1): 101–110. doi:10.1890/11-0557.1.
ISSN 0012-9658. PMID 22486091.
Photo credit: https://www.flickr.com/photos/42912005@N07/5577555349/’]