korarchaeota

 

  • [11] Furthermore, given the known genetic makeup of archaea, the Korarchaeota may have preserved a set of biological traits that correspond to the earliest known archaeal
    form.

  • [12] Analysis of the genome of one korarchaeote that was enriched from a mixed culture revealed a number of both Crenarchaeota- and Euryarchaeota-like features and supports
    the hypothesis of a deep-branching ancestry.

  • [23] Previous research has shown greater diversity of Korarchaea found in terrestrial hot springs compared to marine environments.

  • [17] Characteristics Korarchaeota are a proposed phylum within the domain, Archaea, and therefore exhibit characteristics such as having a cell wall without peptidoglycan,
    as well as lipid membranes that are ether-linked.

  • [19] This surface layer, known as the S-layer, is densely packed and consists of 1-2 proteins form various lattice structures and are most likely what maintains the cells’
    structural integrity.

  • [10] Based on protein sequences and phylogenetic analysis of conserved single genes, the Korarchaeote was identified as a “deep archaeal lineage” with a possible relationship
    to the Crenarchaeota.

  • [13] The cells are long and needle-shaped, which gave the species its name, alluding to its “cryptical filaments”.

  • [18] While they have frequently been observed living in acidic conditions, they have also been found living in conditions up to a pH of 10.

  • [23] Korarchaeota have been found in nature in only low abundances.

  • [24][25][26] Korarcheota likely originated in marine environments and then adapted to terrestrial ones.

 

Works Cited

[‘1. Resolving widespread incomplete and uneven archaeal classifications based on a rank-normalized genome-based taxonomy
2. ^ Rooting the Domain Archaea by Phylogenomic Analysis Supports the Foundation of the New Kingdom Proteoarchaeota
3. ^ See
the NCBI webpage on Korarchaeota. Data extracted from the “NCBI taxonomy resources”. National Center for Biotechnology Information. Retrieved 2007-03-19.
4. ^ Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, et al. (June 2008). “A korarchaeal
genome reveals insights into the evolution of the Archaea”. Proceedings of the National Academy of Sciences of the United States of America. 105 (23): 8102–8107. Bibcode:2008PNAS..105.8102E. doi:10.1073/pnas.0801980105. PMC 2430366. PMID 18535141.
5. ^
Boone DR, Brenner DJ, Castenholz RW, De Vos P, Garrity GM, Krieg NR, Goodfellow M (2001). Bergey’s manual of systematic bacteriology (2nd ed.). New York: Springer. ISBN 978-0-387-21609-6. OCLC 619443681.
6. ^ Jump up to:a b c d e f g Elkins JG,
Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, et al. (June 2008). “A korarchaeal genome reveals insights into the evolution of the Archaea”. Proceedings of the National Academy of Sciences of the United States of America. 105 (23): 8102–8107.
Bibcode:2008PNAS..105.8102E. doi:10.1073/pnas.0801980105. PMC 2430366. PMID 18535141.
7. ^ Jump up to:a b Liu Y, Li M (June 2022). “The unstable evolutionary position of Korarchaeota and its relationship with other TACK and Asgard archaea”. mLife.
1 (2): 218–222. doi:10.1002/mlf2.12020. ISSN 2770-100X. S2CID 249298036.
8. ^ Miller-Coleman RL, Dodsworth JA, Ross CA, Shock EL, Williams AJ, Hartnett HE, et al. (2012-05-04). “Korarchaeota diversity, biogeography, and abundance in Yellowstone
and Great Basin hot springs and ecological niche modeling based on machine learning”. PLOS ONE. 7 (5): e35964. doi:10.1371/journal.pone.0035964. PMC 3344838. PMID 22574130.
9. ^ Barns SM, Delwiche CF, Palmer JD, Pace NR (August 1996). “Perspectives
on archaeal diversity, thermophily and monophyly from environmental rRNA sequences”. Proceedings of the National Academy of Sciences of the United States of America. 93 (17): 9188–9193. Bibcode:1996PNAS…93.9188B. doi:10.1073/pnas.93.17.9188. PMC
38617. PMID 8799176.
10. ^ Reigstad LJ, Jorgensen SL, Schleper C (March 2010). “Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka”. The ISME Journal. 4 (3): 346–356. doi:10.1038/ismej.2009.126. PMID 19956276.
S2CID 6951841.
11. ^ Jump up to:a b Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, et al. (June 2008). “A korarchaeal genome reveals insights into the evolution of the Archaea”. Proceedings of the National Academy of Sciences of the
United States of America. 105 (23): 8102–8107. Bibcode:2008PNAS..105.8102E. doi:10.1073/pnas.0801980105. PMC 2430366. PMID 18535141.
12. ^ Barns SM, Delwiche CF, Palmer JD, Pace NR (August 1996). “Perspectives on archaeal diversity, thermophily
and monophyly from environmental rRNA sequences”. Proceedings of the National Academy of Sciences of the United States of America. 93 (17): 9188–9193. Bibcode:1996PNAS…93.9188B. doi:10.1073/pnas.93.17.9188. PMC 38617. PMID 8799176.
13. ^ Jump
up to:a b Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, et al. (June 2008). “A korarchaeal genome reveals insights into the evolution of the Archaea”. Proceedings of the National Academy of Sciences of the United States of America.
105 (23): 8102–8107. Bibcode:2008PNAS..105.8102E. doi:10.1073/pnas.0801980105. PMC 2430366. PMID 18535141.
14. ^ Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. (January 2020). “NCBI Taxonomy: a comprehensive update on
curation, resources and tools”. Database. 2020: baaa062. doi:10.1093/database/baaa062. PMC 7408187. PMID 32761142.
15. ^ Jump up to:a b c d e f g Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. (January 2020). “NCBI Taxonomy:
a comprehensive update on curation, resources and tools”. Database. 2020: baaa062. doi:10.1093/database/baaa062. PMC 7408187. PMID 32761142.
16. ^ Jump up to:a b McKay LJ, Dlakić M, Fields MW, Delmont TO, Eren AM, Jay ZJ, et al. (April 2019). “Co-occurring
genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota”. Nature Microbiology. 4 (4): 614–622. doi:10.1038/s41564-019-0362-4. OSTI 1779059. PMID 30833730. S2CID 256705892.
17. ^ Brown AM, Hoopes
SL, White RH, Sarisky CA (December 2011). “Purine biosynthesis in archaea: variations on a theme”. Biology Direct. 6: 63. doi:10.1186/1745-6150-6-63. PMC 3261824. PMID 22168471.
18. ^ Jump up to:a b c d Miller RL (January 2008). “Diversity, biogeography,
and geochemical habitat of Korarchaeota in continental hot springs”. UNLV Retrospective Theses & Dissertations. doi:10.25669/6h98-vit6.
19. ^ Jump up to:a b Rodrigues-Oliveira T, Belmok A, Vasconcellos D, Schuster B, Kyaw CM (2017). “Archaeal S-Layers:
Overview and Current State of the Art”. Frontiers in Microbiology. 8: 2597. doi:10.3389/fmicb.2017.02597. PMC 5744192. PMID 29312266.
20. ^ Jump up to:a b Elkins JG, Kunin V, Anderson I, Barry K, Goltsman E, Lapidus A, et al. (May 2007). The Korarchaeota:
Archaeal orphans representing an ancestral lineage of life (Report). Berkeley, CA (United States): Lawrence Berkeley National Lab. (LBNL). doi:10.2172/960397. OSTI 960397.
21. ^ Berg IA, Kockelkorn D, Buckel W, Fuchs G (December 2007). “A 3-hydroxypropionate/4-hydroxybutyrate
autotrophic carbon dioxide assimilation pathway in Archaea”. Science. 318 (5857): 1782–1786. doi:10.1126/science.1149976. PMID 18079405. S2CID 13218676.
22. ^ Takai K, Yoshihiko S (1 February 1999). “A molecular view of archaeal diversity in marine
and terrestrial hot water environments”. Microbiology Ecology. 28 (2): 177–188. doi:10.1111/j.1574-6941.1999.tb00573.x. S2CID 84495991.
23. ^ Jump up to:a b c d e Reigstad LJ, Jorgensen SL, Schleper C (March 2010). “Diversity and abundance of Korarchaeota
in terrestrial hot springs of Iceland and Kamchatka”. The ISME Journal. 4 (3): 346–356. doi:10.1038/ismej.2009.126. PMID 19956276. S2CID 6951841.
24. ^ Jump up to:a b Auchtung TA, Shyndriayeva G, Cavanaugh CM (January 2011). “16S rRNA phylogenetic
analysis and quantification of Korarchaeota indigenous to the hot springs of Kamchatka, Russia”. Extremophiles. 15 (1): 105–116. doi:10.1007/s00792-010-0340-5. PMID 21153671. S2CID 12091232.
25. ^ Reigstad LJ, Jorgensen SL, Schleper C (March 2010).
“Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka”. The ISME Journal. 4 (3): 346–356. doi:10.1038/ismej.2009.126. PMID 19956276.
26. ^ Auchtung TA (2007). Ecology of the hydrothermal candidate archaeal
division, Korarchaeota (PhD thesis). Harvard University.
27. ^ Miller-Coleman RL, Dodsworth JA, Ross CA, Shock EL, Williams AJ, Hartnett HE, et al. (2012-05-04). Mormile MR (ed.). “Korarchaeota diversity, biogeography, and abundance in Yellowstone
and Great Basin hot springs and ecological niche modeling based on machine learning”. PLOS ONE. 7 (5): e35964. doi:10.1371/journal.pone.0035964. PMC 3344838. PMID 22574130.
28. ^ Marteinsson VT, Kristjánsson JK, Kristmannsdóttir H, Dahlkvist M,
Saemundsson K, Hannington M, et al. (February 2001). “Discovery and description of giant submarine smectite cones on the seafloor in Eyjafjordur, northern Iceland, and a novel thermal microbial habitat”. Applied and Environmental Microbiology. 67
(2): 827–833. doi:10.1128/AEM.67.2.827-833.2001. PMC 92654. PMID 11157250.
29. ^ Liu Y, Brandt D, Ishino S, Ishino Y, Koonin EV, Kalinowski J, et al. (June 2019). “New archaeal viruses discovered by metagenomic analysis of viral communities in enrichment
cultures”. Environmental Microbiology. 21 (6): 2002–2014. doi:10.1111/1462-2920.14479. PMID 30451355. S2CID 53950297.
Photo credit: https://www.flickr.com/photos/martinaphotography/8021540573/’]