molecular machine

 

  • [53] Molecular motor   A molecule that is capable of directional rotary motion around a single or double bond and produce useful work as a result (as depicted in the image).

  • [citation needed] Terminology Several definitions describe a “molecular machine” as a class of molecules typically described as an assembly of a discrete number of molecular
    components intended to produce mechanical movements in response to specific stimuli.

  • This design realized the well-defined motion of a molecular unit across the length of the molecule for the first time.

  • Biological machines are considered to be nanoscale devices (such as molecular proteins) in a living system that convert various forms of energy to mechanical work in order
    to drive crucial biological processes such as intracellular transport, muscle contractions, ATP generation and cell division.

  • If these two sites are different from each other in terms of features like electron density, this can give rise to weak or strong recognition sites as in biological systems
    — such AMMs have found applications in catalysis and drug delivery.

  • For instance, AMM-immobilized surfaces (AMMISs) are a novel class of functional materials consisting of AMMs attached to inorganic surfaces forming features like self-assembled
    monolayers; this gives rise to tunable properties such as fluorescence, aggregation and drug-release activity.

  • [4][5] The advent of conformational analysis, or the study of conformers to analyze complex chemical structures, in the 1950s gave rise to the idea of understanding and controlling
    relative motion within molecular components for further applications.

  • [23] Bending or V-like shapes can be achieved by incorporating double bonds, that can undergo cis-trans isomerization in response to certain stimuli (typically irradiation
    with a suitable wavelength), as seen in numerous designs consisting of stilbene and azobenzene units.

  • Molecular machines are a class of molecules typically described as an assembly of a discrete number of molecular components intended to produce mechanical movements in response
    to specific stimuli, mimicking macromolecular devices such as switches and motors.

  • This led to the addition of stimuli-responsive moieties in AMM design, so that externally applied non-thermal sources of energy could drive molecular motion and hence allow
    control over the properties.

  • Unlike a molecular motor, any mechanical work done due to the motion in a switch is generally undone once the molecule returns to its original state unless it is part of a
    larger motor-like system.

  • [27][28] Some common types of motion seen in some simple components of artificial molecular machines.

  • [26] Another line of AMMs consists of biomolecules such as DNA and proteins as part of their design, making use of phenomena like protein folding and unfolding.

  • Inspired by the use of kinetic control to produce work in natural processes, molecular motors are designed to have a continuous energy influx to keep them away from equilibrium
    to deliver work.

  • [7] In 1994, an improved design allowed control over the motion of the ring by pH variation or electrochemical methods, making it the first example of an AMM.

  • The first example of an artificial molecular machine (AMM) was reported in 1994, featuring a rotaxane with a ring and two different possible binding sites.

  • [68] A common molecular shuttle consists of a rotaxane where the macrocycle can move between two sites or stations along the dumbbell backbone; controlling the properties
    of either site and by regulating conditions like pH can enable control over which site is selected for binding.

  • Chemical energy (or “chemical fuels”) was an attractive option at the beginning, given the broad array of reversible chemical reactions (heavily based on acid-base chemistry)
    to switch molecules between different states.

  • A major starting point for the design of AMMs is to exploit the existing modes of motion in molecules.

  • [3] Molecular machines differ from other stimuli-responsive compounds that can produce motion (such as cis-trans isomers) in their relatively larger amplitude of movement
    (potentially due to chemical reactions) and the presence of a clear external stimulus to regulate the movements (as compared to random thermal motion).

  • Though a diverse variety of AMMs are known today, experimental studies of these molecules are inhibited by the lack of methods to construct these molecules.

  • [2] A few prime requirements for a molecule to be considered a “molecular machine” are: the presence of moving parts, the ability to consume energy, and the ability to perform
    a task.

  • A major route is the introduction of bistability to produce molecular switches, featuring two distinct configurations for the molecule to convert between.

  • [68][69] Molecular switch A molecule that can be reversibly shifted between two or more stable states in response to certain stimuli.

  • [25] Another common mode of movement is the circumrotation of rings relative to one another as observed in mechanically interlocked molecules (primarily catenanes).

  • Kinesins and ribosomes are examples of molecular machines, and they often take the form of multi-protein complexes.

  • Eventually, several different forms of energy (electric,[31] magnetic,[32] optical[33] and so on) have become the primary energy sources used to power AMMs, even producing
    autonomous systems such as light-driven motors.

  • This has been perceived as a step forward from the original molecular shuttle which consisted of two identical sites for the ring to move between without any preference, in
    a manner analogous to the ring flip in an unsubstituted cyclohexane.

  • “[79] Other biological machines are responsible for energy production, for example ATP synthase which harnesses energy from proton gradients across membranes to drive a turbine-like
    motion used to synthesise ATP, the energy currency of a cell.

  • [4][5] History Biological molecular machines have been known and studied for years given their vital role in sustaining life, and have served as inspiration for synthetically
    designed systems with similar useful functionality.

  • [2] Piezoelectric, magnetostrictive, and other materials that produce a movement due to external stimuli on a macro-scale are generally not included, since despite the molecular
    origin of the motion the effects are not useable on the molecular scale.

  • A broad range of AMMs has been designed, featuring different properties and applications; some of these include molecular motors,[1] switches, and logic gates.

  • [34] Types[edit] Various AMMs have been designed with a broad range of functions and applications, several of which have been tabulated below along with indicative images:[20]
    Molecular balance A molecule that can interconvert between two or more conformational or configurational states in response to the dynamic of multiple intra- and intermolecular driving forces,[35][36] such as hydrogen bonding, solvophobic
    or hydrophobic effects,[37] π interactions,[38] and steric and dispersion interactions.

  • This definition generally applies to synthetic molecular machines, which have historically gained inspiration from the naturally occurring biological molecular machines (also
    referred to as “nanomachines”).

  • [77] Biological molecular machines The most complex macromolecular machines are found within cells, often in the form of multi-protein complexes.

  • [11] Building upon the assembly of mechanically linked molecules such as catenanes and rotaxanes as developed by Jean-Pierre Sauvage in the early 1980s,[12][13] this shuttle
    features a rotaxane with a ring that can move across an “axle” between two ends or possible binding sites (hydroquinone units).

  • While this type of rotation can not be accessed beyond the molecule itself (because the rings are confined within one another), rotaxanes can overcome this as the rings can
    undergo translational movements along a dumbbell-like axis.

  • [51][52] The first example of a molecular logic gate was reported in 1993, featuring a receptor (see image) where the emission intensity could be treated as a tunable output
    if the concentrations of protons and sodium ions were to be considered as inputs.

  • Though the movements in AMMs were regulated relative to the random thermal motion generally seen in molecules, they could not be controlled or manipulated as desired.

  • [74] Nanocar Single-molecule vehicles that resemble macroscopic automobiles and are important for understanding how to control molecular diffusion on surfaces.

  • A major example is the design of a photoresponsive crown ether containing an azobenzene unit, which could switch between cis and trans isomers on exposure to light and hence
    tune the cation-binding properties of the ether.

  • The image on the right shows an example with wheels made of fullerene molecules.

 

Works Cited

[‘Carroll, GT; Pollard, MM; van Delden, RA; Feringa, BL (2010). “Controlled rotary motion of light-driven molecular motors assembled on a gold surface” (PDF). Chemical Science. 1 (1): 97–101. doi:10.1039/C0SC00162G. hdl:11370/4fb63d6d-d764-45e3-b3cb-32a4c629b942.
S2CID 97346507.
2. ^ Jump up to:a b c d Vincenzo, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. (2000). “Artificial Molecular Machines”. Angewandte Chemie International Edition. 39 (19): 3348–3391. doi:10.1002/1521-3773(20001002)39:19
<3348::AID-ANIE3348>3.0.CO;2-X. PMID 11091368.
3. ^ Jump up to:a b c d Cheng, C.; Stoddart, J. F. (2016). “Wholly Synthetic Molecular Machines”. ChemPhysChem. 17 (12): 1780–1793. doi:10.1002/cphc.201501155. PMID 26833859. S2CID 205704375.
4. ^ Jump up to:a b Huang,
T. J.; Juluri, B. K. (2008). “Biological and biomimetic molecular machines”. Nanomedicine. 3 (1): 107–124. doi:10.2217/17435889.3.1.107. PMID 18393670.
5. ^ Jump up to:a b Kinbara, K.; Aida, T. (2005). “Toward Intelligent Molecular Machines:
Directed Motions of Biological and Artificial Molecules and Assemblies”. Chemical Reviews. 105 (4): 1377–1400. doi:10.1021/cr030071r. PMID 15826015.
6. ^ Jump up to:a b Feynman, R. (1960). “There’s Plenty of Room at the Bottom” (PDF). Engineering
and Science. 23 (5): 22–36.
7. ^ Jump up to:a b Kay, E. R.; Leigh, D. A. (2015). “Rise of the molecular machines”. Angewandte Chemie International Edition. 54 (35): 10080–10088. doi:10.1002/anie.201503375. PMC 4557038. PMID 26219251.
8. ^
Shinkai, S.; Nakaji, T.; Nishida, Y.; Ogawa, T.; Manabe, O. (1980). “Photoresponsive crown ethers. 1. Cis-trans isomerism of azobenzene as a tool to enforce conformational changes of crown ethers and polymers”. Journal of the American Chemical
Society. 102 (18): 5860–5865. doi:10.1021/ja00538a026.
9. ^ Drexler, K. E. (1981). “Molecular engineering: An approach to the development of general capabilities for molecular manipulation”. Proceedings of the National Academy of Sciences. 78
(9): 5275–5278. Bibcode:1981PNAS…78.5275D. doi:10.1073/pnas.78.9.5275. PMC 348724. PMID 16593078.
10. ^ Baum, R. (1 December 2003). “Drexler and Smalley make the case for and against ‘molecular assemblers'”. C&EN. Vol. 81, no. 48. pp. 37–42.
Retrieved 16 January 2023.
11. ^ Jump up to:a b Anelli, P. L.; Spencer, N.; Stoddart, J. F. (1991). “A molecular shuttle”. Journal of the American Chemical Society. 113 (13): 5131–5133. doi:10.1021/ja00013a096. PMID 27715028. S2CID 39993887.
12. ^
Dietrich-Buchecker, C. O.; Sauvage, J. P.; Kintzinger, J. P. (1983). “Une nouvelle famille de molecules : les metallo-catenanes” [A new family of molecules: metallo-catenanes]. Tetrahedron Letters (in French). 24 (46): 5095–5098. doi:10.1016/S0040-4039(00)94050-4.
13. ^
Dietrich-Buchecker, C. O.; Sauvage, J. P.; Kern, J. M. (May 1984). “Templated synthesis of interlocked macrocyclic ligands: the catenands”. Journal of the American Chemical Society. 106 (10): 3043–3045. doi:10.1021/ja00322a055.
14. ^ Bissell,
R. A; Córdova, E.; Kaifer, A. E.; Stoddart, J. F. (1994). “A chemically and electrochemically switchable molecular shuttle”. Nature. 369 (6476): 133–137. Bibcode:1994Natur.369..133B. doi:10.1038/369133a0. S2CID 44926804.
15. ^ Gimzewski, J.
K.; Joachim, C.; Schlittler, R. R.; Langlais, V.; Tang, H.; Johannsen, I. (1998). “Rotation of a Single Molecule Within a Supramolecular Bearing”. Science. 281 (5376): 531–533. Bibcode:1998Sci…281..531G. doi:10.1126/science.281.5376.531. PMID
9677189.
16. ^ Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. (2000). “Artificial Molecular Machines”. Angewandte Chemie International Edition. 39 (19): 3348–3391. doi:10.1002/1521-3773(20001002)39:19
<3348::AID-ANIE3348>3.0.CO;2-X. PMID 11091368.
17. ^ Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L. (2015). “Artificial Molecular Machines”. Chemical Reviews. 115 (18): 10081–10206. doi:10.1021/acs.chemrev.5b00146. PMC 4585175. PMID 26346838.
18. ^
Staff (5 October 2016). “The Nobel Prize in Chemistry 2016”. Nobel Foundation. Retrieved 5 October 2016.
19. ^ Chang, Kenneth; Chan, Sewell (5 October 2016). “3 Makers of ‘World’s Smallest Machines’ Awarded Nobel Prize in Chemistry”.
New York Times. Retrieved 5 October 2016.
20. ^ Jump up to:a b Erbas-Cakmak, Sundus; Leigh, David A.; McTernan, Charlie T.; Nussbaumer, Alina L. (2015). “Artificial Molecular Machines”. Chemical Reviews. 115 (18): 10081–10206. doi:10.1021/acs.chemrev.5b00146.
PMC 4585175. PMID 26346838.
21. ^ Nogales, E.; Grigorieff, N. (2001). “Molecular Machines: putting the pieces together”. The Journal of Cell Biology. 152 (1): F1-10. doi:10.1083/jcb.152.1.f1. PMC 2193665. PMID 11149934.
22. ^ Jiang, X.;
Rodríguez-Molina, B.; Nazarian, N.; Garcia-Garibay, M. A. (2014). “Rotation of a Bulky Triptycene in the Solid State: Toward Engineered Nanoscale Artificial Molecular Machines”. Journal of the American Chemical Society. 136 (25): 8871–8874.
doi:10.1021/ja503467e. PMID 24911467.
23. ^ Kai, H.; Nara, S.; Kinbara, K.; Aida, T. (2008). “Toward Long-Distance Mechanical Communication: Studies on a Ternary Complex Interconnected by a Bridging Rotary Module”. Journal of the American
Chemical Society. 130 (21): 6725–6727. doi:10.1021/ja801646b. PMID 18447353.
24. ^ Kamiya, Y.; Asanuma, H. (2014). “Light-Driven DNA Nanomachine with a Photoresponsive Molecular Engine”. Accounts of Chemical Research. 47 (6): 1663–1672.
doi:10.1021/ar400308f. PMID 24617966.
25. ^ Morimoto, M.; Irie, M. (2010). “A Diarylethene Cocrystal that Converts Light into Mechanical Work”. Journal of the American Chemical Society. 132 (40): 14172–14178. doi:10.1021/ja105356w. PMID
20858003.
26. ^ Stoddart, J. F. (2009). “The chemistry of the mechanical bond”. Chemical Society Reviews. 38 (6): 1802–1820. doi:10.1039/B819333A. PMID 19587969.
27. ^ Mao, X.; Liu, M.; Li, Q.; Fan, C.; Zuo, X. (2022). “DNA-Based Molecular
Machines”. JACS Au. 2 (11): 2381–2399. doi:10.1021/jacsau.2c00292. PMC 9709946. PMID 36465542.
28. ^ Saper, G.; Hess, H. (2020). “Synthetic Systems Powered by Biological Molecular Motors”. Chemical Reviews. 120 (1): 288–309. doi:10.1021/acs.chemrev.9b00249.
PMID 31509383. S2CID 202562979.
29. ^ Biagini, C.; Di Stefano, S. (2020). “Abiotic Chemical Fuels for the Operation of Molecular Machines”. Angewandte Chemie International Edition. 59 (22): 8344–8354. doi:10.1002/anie.201912659. PMID 31898850.
S2CID 209676880.
30. ^ Tatum, L. A.; Foy, J. T.; Aprahamian, I. (2014). “Waste Management of Chemically Activated Switches: Using a Photoacid To Eliminate Accumulation of Side Products”. Journal of the American Chemical Society. 136 (50):
17438–17441. doi:10.1021/ja511135k. PMID 25474221.
31. ^ Le Poul, N.; Colasson, B. (2015). “Electrochemically and Chemically Induced Redox Processes in Molecular Machines”. ChemElectroChem. 2 (4): 475–496. doi:10.1002/celc.201402399.
32. ^
Thomas, C. R.; Ferris, D. P.; Lee, J.-H.; Choi, E.; Cho, M. H.; Kim, E. S.; Stoddart, J. F.; Shin, J.-S.; Cheon, J.; Zink, J. I. (2010). “Noninvasive Remote-Controlled Release of Drug Molecules in Vitro Using Magnetic Actuation of Mechanized
Nanoparticles”. Journal of the American Chemical Society. 132 (31): 10623–10625. doi:10.1021/ja1022267. PMID 20681678.
33. ^ Balzani, V.; Credi, A.; Venturi, M. (2009). “Light powered molecular machines”. Chemical Society Reviews. 38 (6):
1542–1550. doi:10.1039/B806328C. PMID 19587950.
34. ^ Balzani, V.; Clemente-León, M.; Credi, A.; Ferrer, B.; Venturi, M.; Flood, A. H.; Stoddart, J. F. (2006). “Autonomous artificial nanomotor powered by sunlight”. Proceedings of the National
Academy of Sciences. 103 (5): 1178–1183. Bibcode:2006PNAS..103.1178B. doi:10.1073/pnas.0509011103. PMC 1360556. PMID 16432207.
35. ^ Paliwal, S.; Geib, S.; Wilcox, C. S. (1994). “Molecular Torsion Balance for Weak Molecular Recognition Forces.
Effects of “Tilted-T” Edge-to-Face Aromatic Interactions on Conformational Selection and Solid-State Structure”. Journal of the American Chemical Society. 116 (10): 4497–4498. doi:10.1021/ja00089a057.
36. ^ Mati, Ioulia K.; Cockroft, Scott
L. (2010). “Molecular balances for quantifying non-covalent interactions” (PDF). Chemical Society Reviews. 39 (11): 4195–4205. doi:10.1039/B822665M. hdl:20.500.11820/7ce18ff7-1196-48a1-8c67-3bc3f6b46946. PMID 20844782. S2CID 263667.
37. ^
Y., Lixu; A., Catherine; Cockroft, S. L. (2015). “Quantifying Solvophobic Effects in Nonpolar Cohesive Interactions”. Journal of the American Chemical Society. 137 (32): 10084–10087. doi:10.1021/jacs.5b05736. hdl:20.500.11820/604343eb-04aa-4d90-82d2-0998898400d2.
ISSN 0002-7863. PMID 26159869.
38. ^ L., Ping; Z., Chen; Smith, M. D.; Shimizu, K. D. (2013). “Comprehensive Experimental Study of N-Heterocyclic π-Stacking Interactions of Neutral and Cationic Pyridines”. The Journal of Organic Chemistry.
78 (11): 5303–5313. doi:10.1021/jo400370e. PMID 23675885.
39. ^ Hwang, J.; Li, P.; Smith, M. D.; Shimizu, K. D. (2016). “Distance-Dependent Attractive and Repulsive Interactions of Bulky Alkyl Groups”. Angewandte Chemie International Edition.
55 (28): 8086–8089. doi:10.1002/anie.201602752. PMID 27159670.
40. ^ Carroll, W. R.; Zhao, C.; Smith, M. D.; Pellechia, P. J.; Shimizu, K. D. (2011). “A Molecular Balance for Measuring Aliphatic CH−π Interactions”. Organic Letters. 13 (16):
4320–4323. doi:10.1021/ol201657p. PMID 21797218.
41. ^ Carroll, W. R.; Pellechia, P.; Shimizu, K. D. (2008). “A Rigid Molecular Balance for Measuring Face-to-Face Arene−Arene Interactions”. Organic Letters. 10 (16): 3547–3550. doi:10.1021/ol801286k.
PMID 18630926.
42. ^ Kassem, Salma; van Leeuwen, Thomas; Lubbe, Anouk S.; Wilson, Miriam R.; Feringa, Ben L.; Leigh, David A. (2017). “Artificial molecular motors” (PDF). Chemical Society Reviews. 46 (9): 2592–2621. doi:10.1039/C7CS00245A.
PMID 28426052.
43. ^ Bandara, H. M. Dhammika; Burdette, S. C. (2012). “Photoisomerization in different classes of azobenzene”. Chemical Society Reviews. 41 (5): 1809–1825. doi:10.1039/c1cs15179g. PMID 22008710.
44. ^ Wang, J.; Jiang, Q.;
Hao, X.; Yan, H.; Peng, H.; Xiong, B.; Liao, Y.; Xie, X. (2020). “Reversible photo-responsive gel–sol transitions of robust organogels based on an azobenzene-containing main-chain liquid crystalline polymer”. RSC Advances. 10 (7): 3726–3733.
Bibcode:2020RSCAd..10.3726W. doi:10.1039/C9RA10161F. PMC 9048773. PMID 35492656.
45. ^ Hada, M.; Yamaguchi, D.; Ishikawa, T.; Sawa, T.; Tsuruta, K.; Ishikawa, K.; Koshihara, S.-y.; Hayashi, Y.; Kato, T. (13 September 2019). “Ultrafast isomerization-induced
cooperative motions to higher molecular orientation in smectic liquid-crystalline azobenzene molecules”. Nature Communications. 10 (1): 4159. Bibcode:2019NatCo..10.4159H. doi:10.1038/s41467-019-12116-6. ISSN 2041-1723. PMC 6744564. PMID 31519876.
46. ^
Garcia-Amorós, J.; Reig, M.; Cuadrado, A.; Ortega, M.; Nonell, S.; Velasco, D. (2014). “A photoswitchable bis-azo derivative with a high temporal resolution”. Chemical Communications. 50 (78): 11462–11464. doi:10.1039/C4CC05331A. PMID 25132052.
47. ^
Hamilton, A. D.; Van Engen, D. (1987). “Induced fit in synthetic receptors: nucleotide base recognition by a molecular hinge”. Journal of the American Chemical Society. 109 (16): 5035–5036. doi:10.1021/ja00250a052.
48. ^ Dumy, P.; Keller,
M.; Ryan, D. E.; Rohwedder, B.; Wöhr, T.; Mutter, M. (1997). “Pseudo-Prolines as a Molecular Hinge: Reversible Induction of cis Amide Bonds into Peptide Backbones”. Journal of the American Chemical Society. 119 (5): 918–925. doi:10.1021/ja962780a.
49. ^
Ai, Y.; Chan, M. H.-Y.; Chan, A. K.-W.; Ng, M.; Li, Y.; Yam, V. W.-W. (2019). “A platinum(II) molecular hinge with motions visualized by phosphorescence changes”. Proceedings of the National Academy of Sciences. 116 (28): 13856–13861. Bibcode:2019PNAS..11613856A.
doi:10.1073/pnas.1908034116. PMC 6628644. PMID 31243146.
50. ^ Erbas-Cakmak, S.; Kolemen, S.; Sedgwick, A. C.; Gunnlaugsson, T.; James, T. D.; Yoon, J.; Akkaya, E. U. (2018). “Molecular logic gates: the past, present and future”. Chemical
Society Reviews. 47 (7): 2228–2248. doi:10.1039/C7CS00491E. hdl:11693/50034. PMID 29493684.
51. ^ de Silva, A. P. (2011). “Molecular Logic Gate Arrays”. Chemistry: An Asian Journal. 6 (3): 750–766. doi:10.1002/asia.201000603. PMID 21290607.
52. ^
Liu, L.; Liu, P.; Ga, L.; Ai, J. (2021). “Advances in Applications of Molecular Logic Gates”. ACS Omega. 6 (45): 30189–30204. doi:10.1021/acsomega.1c02912. PMC 8600522. PMID 34805654.
53. ^ de Silva, P. A.; Gunaratne, N. H. Q.; McCoy, C.
P. (1993). “A molecular photoionic AND gate based on fluorescent signalling”. Nature. 364 (6432): 42–44. Bibcode:1993Natur.364…42D. doi:10.1038/364042a0. S2CID 38260349.
54. ^ Lancia, F.; Ryabchun, A.; Katsonis, N. (2019). “Life-like motion
driven by artificial molecular machines”. Nature Reviews Chemistry. 3 (9): 536–551. doi:10.1038/s41570-019-0122-2. S2CID 199661943.
55. ^ Mickler, M.; Schleiff, E.; Hugel, T. (2008). “From Biological towards Artificial Molecular Motors”.
ChemPhysChem. 9 (11): 1503–1509. doi:10.1002/cphc.200800216. PMID 18618534.
56. ^ Fennimore, A. M.; Yuzvinsky, T. D.; Han, Wei-Qiang; Fuhrer, M. S.; Cumings, J.; Zettl, A. (24 July 2003). “Rotational actuators based on carbon nanotubes”.
Nature. 424 (6947): 408–410. Bibcode:2003Natur.424..408F. doi:10.1038/nature01823. PMID 12879064. S2CID 2200106.
57. ^ Kelly, T. Ross; De Silva, Harshani; Silva, Richard A. (9 September 1999). “Unidirectional rotary motion in a molecular
system”. Nature. 401 (6749): 150–152. Bibcode:1999Natur.401..150K. doi:10.1038/43639. PMID 10490021. S2CID 4351615.
58. ^ Koumura, Nagatoshi; Zijlstra, Robert W. J.; van Delden, Richard A.; Harada, Nobuyuki; Feringa, Ben L. (9 September
1999). “Light-driven monodirectional molecular rotor” (PDF). Nature. 401 (6749): 152–155. Bibcode:1999Natur.401..152K. doi:10.1038/43646. hdl:11370/d8399fe7-11be-4282-8cd0-7c0adf42c96f. PMID 10490022. S2CID 4412610.
59. ^ Vicario, Javier;
Meetsma, Auke; Feringa, Ben L. (2005). “Controlling the speed of rotation in molecular motors. Dramatic acceleration of the rotary motion by structural modification”. Chemical Communications. 116 (47): 5910–2. doi:10.1039/B507264F. PMID 16317472.
60. ^
Zhang, Z.; Zhao, J.; Guo, Z.; Zhang, H.; Pan, H.; Wu, Q.; You, W.; Yu, W.; Yan, X. (2022). “Mechanically interlocked networks cross-linked by a molecular necklace”. Nature Communications. 13 (1): 1393. Bibcode:2022NatCo..13.1393Z. doi:10.1038/s41467-022-29141-7.
PMC 8927564. PMID 35296669.
61. ^ Harada, A.; Li, J.; Kamachi, M. (1992). “The molecular necklace: a rotaxane containing many threaded α-cyclodextrins”. Nature. 356 (6367): 325–327. Bibcode:1992Natur.356..325H. doi:10.1038/356325a0. S2CID
4304539.
62. ^ Wu, G.-Y.; Shi, X.; Phan, H.; Qu, H.; Hu, Y.-X.; Yin, G.-Q.; Zhao, X.-L.; Li, X.; Xu, L.; Yu, Q.; Yang, H.-B. (2020). “Efficient self-assembly of heterometallic triangular necklace with strong antibacterial activity”. Nature
Communications. 11 (1): 3178. Bibcode:2020NatCo..11.3178W. doi:10.1038/s41467-020-16940-z. PMC 7311404. PMID 32576814.
63. ^ Li, S.-L.; Lan, Y.-Q.; Sakurai, H.; Xu, Q. (2012). “Unusual Regenerable Porous Metal-Organic Framework Based on
a New Triple Helical Molecular Necklace for Separating Organosulfur Compounds”. Chemistry: A European Journal. 18 (51): 16302–16309. doi:10.1002/chem.201203093. PMID 23168579.
64. ^ Seo, J.; Kim, B.; Kim, M.-S.; Seo, J.-H. (2021). “Optimization
of Anisotropic Crystalline Structure of Molecular Necklace-like Polyrotaxane for Tough Piezoelectric Elastomer”. ACS Macro Letters. 10 (11): 1371–1376. doi:10.1021/acsmacrolett.1c00567. PMID 35549010.
65. ^ Simpson, Christopher D.; Mattersteig,
Gunter; Martin, Kai; Gherghel, Lileta; Bauer, Roland E.; Räder, Hans Joachim; Müllen, Klaus (March 2004). “Nanosized Molecular Propellers by Cyclodehydrogenation of Polyphenylene Dendrimers”. Journal of the American Chemical Society. 126 (10):
3139–3147. doi:10.1021/ja036732j. PMID 15012144.
66. ^ Wang, Boyang; Král, Petr (2007). “Chemically Tunable Nanoscale Propellers of Liquids”. Physical Review Letters. 98 (26): 266102. Bibcode:2007PhRvL..98z6102W. doi:10.1103/PhysRevLett.98.266102.
PMID 17678108.
67. ^ Wang, B.; Král, P. (2007). “Chemically Tunable Nanoscale Propellers of Liquids”. Physical Review Letters. 98 (26): 266102. Bibcode:2007PhRvL..98z6102W. doi:10.1103/PhysRevLett.98.266102. PMID 17678108.
68. ^ Jump up
to:a b Bissell, Richard A; Córdova, Emilio; Kaifer, Angel E.; Stoddart, J. Fraser (12 May 1994). “A chemically and electrochemically switchable molecular shuttle”. Nature. 369 (6476): 133–137. Bibcode:1994Natur.369..133B. doi:10.1038/369133a0.
S2CID 44926804.
69. ^ Chatterjee, M. N.; Kay, E. R.; Leigh, D. A. (2006). “Beyond Switches: Ratcheting a Particle Energetically Uphill with a Compartmentalized Molecular Machine”. Journal of the American Chemical Society. 128 (12): 4058–4073.
doi:10.1021/ja057664z. PMID 16551115.
70. ^ Kassem, S.; van Leeuwen, T.; Lubbe, A. S.; Wilson, M. R.; Feringa, B. L.; Leigh, D. A. (2017). “Artificial molecular motors”. Chemical Society Reviews. 46 (9): 2592–2621. doi:10.1039/C7CS00245A.
PMID 28426052.
71. ^ Chen, C. W.; Whitlock, H. W. (July 1978). “Molecular tweezers: a simple model of bifunctional intercalation”. Journal of the American Chemical Society. 100 (15): 4921–4922. doi:10.1021/ja00483a063.
72. ^ Klärner, Frank-Gerrit;
Kahlert, Björn (December 2003). “Molecular Tweezers and Clips as Synthetic Receptors. Molecular Recognition and Dynamics in Receptor−Substrate Complexes”. Accounts of Chemical Research. 36 (12): 919–932. doi:10.1021/ar0200448. PMID 14674783.
73. ^
Sygula, A.; Fronczek, F. R.; Sygula, R.; Rabideau, P. W.; Olmstead, M. M. (2007). “A Double Concave Hydrocarbon Buckycatcher”. Journal of the American Chemical Society. 129 (13): 3842–3843. doi:10.1021/ja070616p. PMID 17348661. S2CID 25154754.
74. ^
Yurke, Bernard; Turberfield, Andrew J.; Mills, Allen P.; Simmel, Friedrich C.; Neumann, Jennifer L. (10 August 2000). “A DNA-fuelled molecular machine made of DNA”. Nature. 406 (6796): 605–608. Bibcode:2000Natur.406..605Y. doi:10.1038/35020524.
PMID 10949296. S2CID 2064216.
75. ^ Shirai, Yasuhiro; Osgood, Andrew J.; Zhao, Yuming; Kelly, Kevin F.; Tour, James M. (November 2005). “Directional Control in Thermally Driven Single-Molecule Nanocars”. Nano Letters. 5 (11): 2330–2334.
Bibcode:2005NanoL…5.2330S. doi:10.1021/nl051915k. PMID 16277478.
76. ^ Kudernac, Tibor; Ruangsupapichat, Nopporn; Parschau, Manfred; Maciá, Beatriz; Katsonis, Nathalie; Harutyunyan, Syuzanna R.; Ernst, Karl-Heinz; Feringa, Ben L. (10 November
2011). “Electrically driven directional motion of a four-wheeled molecule on a metal surface”. Nature. 479 (7372): 208–211. Bibcode:2011Natur.479..208K. doi:10.1038/nature10587. PMID 22071765. S2CID 6175720.
77. ^ “NanoCar Race : la course
de petites voitures pour grands savants” [NanoCar Race: the race of small cars for great scientists]. La Dépêche du Midi (in French). November 30, 2017. Retrieved December 2, 2018.
78. ^ Donald, Voet (2011). Biochemistry. Voet, Judith G.
(4th ed.). Hoboken, NJ: John Wiley & Sons. ISBN 9780470570951. OCLC 690489261.
79. ^ Satir, P.; Christensen, S. T. (2008). “Structure and function of mammalian cilia”. Histochemistry and Cell Biology. 129 (6): 687–693. doi:10.1007/s00418-008-0416-9.
PMC 2386530. PMID 18365235.
80. ^ Kinbara, Kazushi; Aida, Takuzo (2005-04-01). “Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies”. Chemical Reviews. 105 (4): 1377–1400. doi:10.1021/cr030071r.
ISSN 0009-2665. PMID 15826015.
81. ^ Bu Z, Callaway DJ (2011). “Proteins MOVE! Protein dynamics and long-range allostery in cell signaling”. Protein Structure and Diseases. Advances in Protein Chemistry and Structural Biology. Vol. 83. Academic
Press. pp. 163–221. doi:10.1016/B978-0-12-381262-9.00005-7. ISBN 9780123812629. PMID 21570668.
82. ^ Amrute-Nayak, M.; Diensthuber, R. P.; Steffen, W.; Kathmann, D.; Hartmann, F. K.; Fedorov, R.; Urbanke, C.; Manstein, D. J.; Brenner, B.;
Tsiavaliaris, G. (2010). “Targeted Optimization of a Protein Nanomachine for Operation in Biohybrid Devices”. Angewandte Chemie. 122 (2): 322–326. Bibcode:2010AngCh.122..322A. doi:10.1002/ange.200905200. PMID 19921669.
83. ^ Patel, G. M.;
Patel, G. C.; Patel, R. B.; Patel, J. K.; Patel, M. (2006). “Nanorobot: A versatile tool in nanomedicine”. Journal of Drug Targeting. 14 (2): 63–7. doi:10.1080/10611860600612862. PMID 16608733. S2CID 25551052.
84. ^ Balasubramanian, S.;
Kagan, D.; Jack Hu, C. M.; Campuzano, S.; Lobo-Castañon, M. J.; Lim, N.; Kang, D. Y.; Zimmerman, M.; Zhang, L.; Wang, J. (2011). “Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media”. Angewandte Chemie International
Edition. 50 (18): 4161–4164. doi:10.1002/anie.201100115. PMC 3119711. PMID 21472835.
85. ^ Freitas, Robert A. Jr.; Havukkala, Ilkka (2005). “Current Status of Nanomedicine and Medical Nanorobotics” (PDF). Journal of Computational and Theoretical
Nanoscience. 2 (4): 471. Bibcode:2005JCTN….2..471K. doi:10.1166/jctn.2005.001.
86. ^ Golestanian, Ramin; Liverpool, Tanniemola B.; Ajdari, Armand (2005-06-10). “Propulsion of a Molecular Machine by Asymmetric Distribution of Reaction Products”.
Physical Review Letters. 94 (22): 220801. arXiv:cond-mat/0701169. Bibcode:2005PhRvL..94v0801G. doi:10.1103/PhysRevLett.94.220801. PMID 16090376. S2CID 18989399.
87. ^ Drexler, K. Eric (1999-01-01). “Building molecular machine systems”. Trends
in Biotechnology. 17 (1): 5–7. doi:10.1016/S0167-7799(98)01278-5. ISSN 0167-7799.
88. ^ Tabacchi, G.; Silvi, S.; Venturi, M.; Credi, A.; Fois, E. (2016). “Dethreading of a Photoactive Azobenzene-Containing Molecular Axle from a Crown Ether
Ring: A Computational Investigation”. ChemPhysChem. 17 (12): 1913–1919. doi:10.1002/cphc.201501160. hdl:11383/2057447. PMID 26918775. S2CID 9660916.
89. ^ Ikejiri, S.; Takashima, Y.; Osaki, M.; Yamaguchi, H.; Harada, A. (2018). “Solvent-Free
Photoresponsive Artificial Muscles Rapidly Driven by Molecular Machines”. Journal of the American Chemical Society. 140 (49): 17308–17315. doi:10.1021/jacs.8b11351. PMID 30415536. S2CID 207195871.
90. ^ Iwaso, K.; Takashima, Y.; Harada,
A. (2016). “Fast response dry-type artificial molecular muscles with [c2]daisy chains”. Nature Chemistry. 8 (6): 625–632. Bibcode:2016NatCh…8..625I. doi:10.1038/nchem.2513. PMID 27219709.
91. ^ Orlova, T.; Lancia, F.; Loussert, C.; Iamsaard,
S.; Katsonis, N.; Brasselet, E. (2018). “Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals” (PDF). Nature Nanotechnology. 13 (4): 304–308. Bibcode:2018NatNa..13..304O. doi:10.1038/s41565-017-0059-x.
PMID 29434262. S2CID 3326300.
92. ^ Hou, J.; Long, G.; Zhao, W.; Zhou, G.; Liu, D.; Broer, D. J.; Feringa, B. L.; Chen, J. (2022). “Phototriggered Complex Motion by Programmable Construction of Light-Driven Molecular Motors in Liquid Crystal
Networks”. Journal of the American Chemical Society. 144 (15): 6851–6860. doi:10.1021/jacs.2c01060. PMC 9026258. PMID 35380815.
93. ^ Terao, F.; Morimoto, M.; Irie, M. (2012). “Light-Driven Molecular-Crystal Actuators: Rapid and Reversible
Bending of Rodlike Mixed Crystals of Diarylethene Derivatives”. Angewandte Chemie International Edition. 51 (4): 901–904. doi:10.1002/anie.201105585. PMID 22028196.
94. ^ Vogelsberg, C. S.; Garcia-Garibay, M. A. (2012). “Crystalline molecular
machines: function, phase order, dimensionality, and composition”. Chemical Society Reviews. 41 (5): 1892–1910. doi:10.1039/c1cs15197e. PMID 22012174.
95. ^ van Dijk, L.; Tilby, M. J.; Szpera, R.; Smith, O. A.; Bunce, H. A. P.; Fletcher,
S. P. (2018). “Molecular machines for catalysis”. Nature Reviews Chemistry. 2 (3): 0117. doi:10.1038/s41570-018-0117. S2CID 139606220.
96. ^ Neal, E. A.; Goldup, S. M. (2014). “Chemical consequences of mechanical bonding in catenanes and
rotaxanes: isomerism, modification, catalysis and molecular machines for synthesis”. Chemical Communications. 50 (40): 5128–5142. doi:10.1039/C3CC47842D. PMID 24434901.
97. ^ Corra, S.; Curcio, M.; Baroncini, M.; Silvi, S.; Credi, A. (2020).
“Photoactivated Artificial Molecular Machines that Can Perform Tasks”. Advanced Materials. 32 (20): 1906064. Bibcode:2020AdM….3206064C. doi:10.1002/adma.201906064. PMID 31957172. S2CID 210830979.
98. ^ Moulin, E.; Faour, L.; Carmona‐Vargas,
C. C.; Giuseppone, N. (2020). “From Molecular Machines to Stimuli‐Responsive Materials” (PDF). Advanced Materials. 32 (20): 1906036. Bibcode:2020AdM….3206036M. doi:10.1002/adma.201906036. PMID 31833132. S2CID 209343354.
99. ^ Zhang, Q.;
Qu, D.-H. (2016). “Artificial Molecular Machine Immobilized Surfaces: A New Platform To Construct Functional Materials”. ChemPhysChem. 17 (12): 1759–1768. doi:10.1002/cphc.201501048. PMID 26717523.
100. ^ Aprahamian, I. (2020). “The Future
of Molecular Machines”. ACS Central Science. 6 (3): 347–358. doi:10.1021/acscentsci.0c00064. PMC 7099591. PMID 32232135.
Photo credit: https://www.flickr.com/photos/marfis75/12949131454/’]