förster resonance energy transfer

 

  • Single-molecule FRET (smFRET)[edit] Main article: Single-molecule FRET smFRET is a group of methods using various microscopic techniques to measure a pair of donor and acceptor
    fluorophores that are excited and detected at the single molecule level.

  • To use unit Å () for the , the equation is adjusted to[17][22][23][24] (Å) For time-dependent analyses of FRET, the rate of energy transfer () can be used directly instead:[17]
    where is the donor’s fluorescence lifetime in the absence of the acceptor.

  • [54][55][56][57] Additionally, FRET can be used to measure distances between domains in a single protein by tagging different regions of the protein with fluorophores and
    measuring emission to determine distance.

  • [10][11] In order to avoid an erroneous interpretation of the phenomenon that is always a nonradiative transfer of energy (even when occurring between two fluorescent chromophores),
    the name “Förster resonance energy transfer” is preferred to “fluorescence resonance energy transfer”; however, the latter enjoys common usage in scientific literature.

  • [64] Chemosensor[edit] FRET-based probe that activates upon interaction with Cd2+ FRET-based probes can detect the presence of various molecules: the probe’s structure is
    affected by small molecule binding or activity, which can turn the FRET system on or off.

  • The variation of the smFRET signal is useful to reveal kinetic information that an ensemble measurement cannot provide, especially when the system is under equilibrium.

  • [50] Fluorescence microscopy study of such single chains demonstrated that energy transfer by FRET between neighbor platelets causes energy to diffuse over a typical 500-nm
    length (about 80 nano emitters), and the transfer time between platelets is on the order of 1 ps.

  • Stryer, Haugland and Yguerabide[27][citation needed][28] also experimentally demonstrated the theoretical dependence of Förster resonance energy transfer on the overlap integral
    by using a fused indolosteroid as a donor and a ketone as an acceptor.

  • Experimental confirmation of the FRET theory The inverse sixth-power distance dependence of Förster resonance energy transfer was experimentally confirmed by Wilchek, Edelhoch
    and Brand[26] using tryptophyl peptides.

  • In many biological situations, however, researchers might need to examine the interactions between two, or more, proteins of the same type—or indeed the same protein with
    itself, for example if the protein folds or forms part of a polymer chain of proteins[46] or for other questions of quantification in biological cells[47] or in vitro experiments.

  • [48] Obviously, spectral differences will not be the tool used to detect and measure FRET, as both the acceptor and donor protein emit light with the same wavelengths.

  • [3][4] Measurements of FRET efficiency can be used to determine if two fluorophores are within a certain distance of each other.

  • Also, the fact that time measurements are over seconds rather than nanoseconds makes it easier than fluorescence lifetime measurements, and because photobleaching decay rates
    do not generally depend on donor concentration (unless acceptor saturation is an issue), the careful control of concentrations needed for intensity measurements is not needed.

  • [9] When both chromophores are fluorescent, the term “fluorescence resonance energy transfer” is often used instead, although the energy is not actually transferred by fluorescence.

  • There are several ways of measuring the FRET efficiency by monitoring changes in the fluorescence emitted by the donor or the acceptor.

  • Quantum electrodynamical calculations have been used to determine that radiationless (FRET) and radiative energy transfer are the short- and long-range asymptotes of a single
    unified mechanism.

  • However, they can be measured by measuring single-molecule FRET with proper placement of the acceptor and donor dyes on the molecules.

  • [71][72][73][74] This technique can be used to determine factors affecting various types of nanoparticle formation[75][76] as well as the mechanisms and effects of nanomedicines.

  • [66] For example, FRET and BRET have been used in various experiments to characterize G-protein coupled receptor activation and consequent signaling mechanisms.

  • The FRET efficiency is measured and used to identify interactions between the labeled complexes.

  • [2] The efficiency of this energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, making FRET extremely sensitive to small
    changes in distance.

  • FRET can be used as a spectroscopic ruler to measure distance and detect molecular interactions in a number of systems and has applications in biology and biochemistry.

  • Other applications[edit] In addition to common uses previously mentioned, FRET and BRET are also effective in the study of biochemical reaction kinetics.

  • [49] In the field of nano-photonics, FRET can be detrimental if it funnels excitonic energy to defect sites, but it is also essential to charge collection in organic and quantum-dot-sensitized
    solar cells, and various FRET-enabled strategies have been proposed for different opto-electronic devices.

  • Similarly, FRET systems have been designed to detect changes in the cellular environment due to such factors as pH, hypoxia, or mitochondrial membrane potential.

  • [22][24] However, a lot of contradictions of special experiments with the theory was observed under complicated environment when the orientations and quantum yields of the
    molecules are difficult to estimate.

  • Yet researchers can detect differences in the polarisation between the light which excites the fluorophores and the light which is emitted, in a technique called FRET anisotropy
    imaging; the level of quantified anisotropy (difference in polarisation between the excitation and emission beams) then becomes an indicative guide to how many FRET events have happened.

  • [77] Other methods A different, but related, mechanism is Dexter electron transfer.

  • [18] This method can be performed on most fluorescence microscopes; one simply shines the excitation light (of a frequency that will excite the donor but not the acceptor
    significantly) on specimens with and without the acceptor fluorophore and monitors the donor fluorescence (typically separated from acceptor fluorescence using a bandpass filter) over time.

  • the distance at which the energy transfer efficiency is 50%.The Förster distance depends on the overlap integral of the donor emission spectrum with the acceptor absorption
    spectrum and their mutual molecular orientation as expressed by the following equation all in SI units:[17][18][19] where is the fluorescence quantum yield of the donor in the absence of the acceptor, is the dipole orientation factor, is the
    refractive index of the medium, is the Avogadro constant, and is the spectral overlap integral calculated as where is the donor emission spectrum, is the donor emission spectrum normalized to an area of 1, and is the acceptor molar extinction
    coefficient, normally obtained from an absorption spectrum.

  • [52] Applications The applications of fluorescence resonance energy transfer (FRET) have expanded tremendously in the last 25 years, and the technique has become a staple
    in many biological and biophysical fields.

  • In contrast to “ensemble FRET” or “bulk FRET” which provides the FRET signal of a high number of molecules, single-molecule FRET is able to resolve the FRET signal of each
    individual molecule.

  • When a twist or bend of the protein brings the change in the distance or relative orientation of the donor and acceptor, FRET change is observed.

  • [14][15] The FRET efficiency depends on many physical parameters[16] that can be grouped as: 1) the distance between the donor and the acceptor (typically in the range of
    1–10 nm), 2) the spectral overlap of the donor emission spectrum and the acceptor absorption spectrum, and 3) the relative orientation of the donor emission dipole moment and the acceptor absorption dipole moment.

  • Even when is quite different from, the error can be associated with a shift in , and thus determinations of changes in relative distance for a particular system are still
    valid.

  • For monitoring the complex formation between two molecules, one of them is labeled with a donor and the other with an acceptor.

  • Since photobleaching consists in the permanent inactivation of excited fluorophores, resonance energy transfer from an excited donor to an acceptor fluorophore prevents the
    photobleaching of that donor fluorophore, and thus high FRET efficiency leads to a longer photobleaching decay time constant: where and are the photobleaching decay time constants of the donor in the presence and in the absence of the acceptor
    respectively.

 

Works Cited

[‘Cheng P (2006). “The Contrast Formation in Optical Microscopy”. In Pawley JB (ed.). Handbook of Biological Confocal Microscopy (3rd ed.). New York, NY: Springer. pp. 162–206. doi:10.1007/978-0-387-45524-2_8. ISBN 978-0-387-25921-5.
2. ^ Helms V (2008).
“Fluorescence Resonance Energy Transfer”. Principles of Computational Cell Biology. Weinheim: Wiley-VCH. p. 202. ISBN 978-3-527-31555-0.
3. ^ Harris DC (2010). “Applications of Spectrophotometry”. Quantitative Chemical Analysis (8th ed.). New York:
W. H. Freeman and Co. pp. 419–44. ISBN 978-1-4292-1815-3.
4. ^ Schneckenburger, Herbert (2019-11-27). “Förster resonance energy transfer–what can we learn and how can we use it?”. Methods and Applications in Fluorescence. 8 (1): 013001. doi:10.1088/2050-6120/ab56e1.
ISSN 2050-6120. PMID 31715588. S2CID 207965475.
5. ^ Zheng J (2006). “Spectroscopy-based quantitative fluorescence resonance energy transfer analysis”. In Stockand JD, Shapiro MS (eds.). Ion Channels. Methods in Molecular Biology. Vol. 337. Humana
Press. pp. 65–77. doi:10.1385/1-59745-095-2:65. ISBN 978-1-59745-095-9. PMID 16929939.
6. ^ Andrews DL (1989). “A unified theory of radiative and radiationless molecular energy transfer” (PDF). Chemical Physics. 135 (2): 195–201. Bibcode:1989CP….135..195A.
doi:10.1016/0301-0104(89)87019-3.
7. ^ Andrews DL, Bradshaw DS (2004). “Virtual photons, dipole fields and energy transfer: A quantum electrodynamical approach” (PDF). European Journal of Physics. 25 (6): 845–858. doi:10.1088/0143-0807/25/6/017.
S2CID 250845175.
8. ^ Jones GA, Bradshaw DS (2019). “Resonance energy transfer: From fundamental theory to recent applications”. Frontiers in Physics. 7: 100. Bibcode:2019FrP…..7..100J. doi:10.3389/fphy.2019.00100.
9. ^ Förster T (1948). “Zwischenmolekulare
Energiewanderung und Fluoreszenz” [Intermolecular energy migration and fluorescence]. Annalen der Physik (in German). 437 (1–2): 55–75. Bibcode:1948AnP…437…55F. doi:10.1002/andp.19484370105.
10. ^ Jump up to:a b Valeur B, Berberan-Santos M (2012).
“Excitation Energy Transfer”. Molecular Fluorescence: Principles and Applications, 2nd ed. Weinheim: Wiley-VCH. pp. 213–261. doi:10.1002/9783527650002.ch8. ISBN 978-3-527-32837-6.
11. ^ FRET microscopy tutorial from Olympus Archived 2012-06-29 at
archive.today
12. ^ Glossary of Terms Used in Photochemistry (3rd ed.). IUPAC. 2007. p. 340.
13. ^ Moens P. “Fluorescence Resonance Energy Transfer spectroscopy”. Archived from the original on July 26, 2016. Retrieved July 14, 2012.
14. ^ Jump
up to:a b Schaufele F, Demarco I, Day RN (2005). “FRET Imaging in the Wide-Field Microscope”. In Periasamy A, Day R (eds.). Molecular Imaging: FRET Microscopy and Spectroscopy. Oxford: Oxford University Press. pp. 72–94. doi:10.1016/B978-019517720-6.50013-4.
ISBN 978-0-19-517720-6.
15. ^ Lee S, Lee J, Hohng S (August 2010). “Single-molecule three-color FRET with both negligible spectral overlap and long observation time”. PLOS ONE. 5 (8): e12270. Bibcode:2010PLoSO…512270L. doi:10.1371/journal.pone.0012270.
PMC 2924373. PMID 20808851.
16. ^ C. King; B. Barbiellini; D. Moser & V. Renugopalakrishnan (2012). “Exactly soluble model of resonant energy transfer between molecules”. Physical Review B. 85 (12): 125106. arXiv:1108.0935. Bibcode:2012PhRvB..85l5106K.
doi:10.1103/PhysRevB.85.125106. S2CID 16938353.
17. ^ Jump up to:a b c Förster T (1965). “Delocalized Excitation and Excitation Transfer”. In Sinanoglu O (ed.). Modern Quantum Chemistry. Istanbul Lectures. Part III: Action of Light and Organic Crystals.
Vol. 3. New York and London: Academic Press. pp. 93–137. Retrieved 2011-06-22.
18. ^ Jump up to:a b c d Clegg R (2009). “Förster resonance energy transfer—FRET: what is it, why do it, and how it’s done”. In Gadella TW (ed.). FRET and FLIM Techniques.
Laboratory Techniques in Biochemistry and Molecular Biology. Vol. 33. Elsevier. pp. 1–57. doi:10.1016/S0075-7535(08)00001-6. ISBN 978-0-08-054958-3.
19. ^ http://spie.org/samples/PM194.pdf[bare URL PDF]
20. ^ Jump up to:a b Demchenko AP (2008).
“Fluorescence Detection Techniques”. Introduction to Fluorescence Sensing. Dordrecht: Springer. pp. 65–118. doi:10.1007/978-1-4020-9003-5_3. ISBN 978-1-4020-9002-8.
21. ^ VanDerMeer, B. Wieb (2020). “Kappaphobia is the elephant in the fret room”.
Methods and Applications in Fluorescence. 8 (3): 030401. Bibcode:2020MApFl…8c0401V. doi:10.1088/2050-6120/ab8f87. ISSN 2050-6120. PMID 32362590.
22. ^ Jump up to:a b “FPbase FRET Calculator”.
23. ^ Chan YH, Chen J, Wark SE, Skiles SL, Son DH,
Batteas JD (2009). “Using patterned arrays of metal nanoparticles to probe plasmon enhanced luminescence of CdSe quantum dots (supporting information)”. ACS Nano. 3 (7): 1735–1744. doi:10.1021/nn900317n. PMID 19499906.
24. ^ Jump up to:a b Wu PG,
Brand L (1994). “Resonance Energy Transfer: Methods and Applications”. Analytical Biochemistry. 218 (1): 1–13. doi:10.1006/abio.1994.1134. PMID 8053542.
25. ^ Majoul I, Jia Y, Duden R (2006). “Practical Fluorescence Resonance Energy Transfer or
Molecular Nanobioscopy of Living Cells”. In Pawley JB (ed.). Handbook of Biological Confocal Microscopy (3rd ed.). New York, NY: Springer. pp. 788–808. doi:10.1007/978-0-387-45524-2_45. ISBN 978-0-387-25921-5.
26. ^ Edelhoch H, Brand L, Wilchek
M (February 1967). “Fluorescence studies with tryptophyl peptides”. Biochemistry. 6 (2): 547–59. doi:10.1021/bi00854a024. PMID 6047638.
27. ^ Lakowicz JR, ed. (1991). Principles. New York: Plenum Press. p. 172. ISBN 978-0-306-43875-2.
28. ^ Jump
up to:a b Lakowicz JR (1999). Principles of fluorescence spectroscopy (2nd ed.). New York, NY: Kluwer Acad./Plenum Publ. pp. 374–443. ISBN 978-0-306-46093-7.
29. ^ Vekshin NL (1997). “Energy Transfer in Macromolecules, SPIE”. In Vekshin NL (ed.).
Photonics of Biopolymers. Springer.
30. ^ “Fluorescence Resonance Energy Transfer Protocol”. Wellcome Trust. Archived from the original on July 17, 2013. Retrieved 24 June 2012.
31. ^ Szöllősi J, Alexander DR (2007). “The Application of Fluorescence
Resonance Energy Transfer to the Investigation of Phosphatases”. In Klumpp S, Krieglstein J (eds.). Protein Phosphatases. Methods in Enzymology. Vol. 366. Amsterdam: Elsevier. pp. 203–24. doi:10.1016/S0076-6879(03)66017-9. ISBN 978-0-12-182269-9.
PMID 14674251.
32. ^ Periasamy A (July 2001). “Fluorescence resonance energy transfer microscopy: a mini review” (PDF). Journal of Biomedical Optics. 6 (3): 287–91. Bibcode:2001JBO…..6..287P. doi:10.1117/1.1383063. PMID 11516318. S2CID 39759478.
Archived from the original (PDF) on 2020-02-10.
33. ^ Nguyen AW, Daugherty PS (March 2005). “Evolutionary optimization of fluorescent proteins for intracellular FRET”. Nature Biotechnology. 23 (3): 355–60. doi:10.1038/nbt1066. PMID 15696158. S2CID
24202205.
34. ^ Bevan N, Rees S (2006). “Pharmaceutical Applications of GFP and RCFP”. In Chalfie M, Kain SR (eds.). Green Fluorescent Protein: Properties, Applications and Protocols. Methods of Biochemical Analysis. Vol. 47 (2nd ed.). Hoboken,
NJ: John Wiley & Sons. pp. 361–90. doi:10.1002/0471739499.ch16. ISBN 978-0-471-73682-0. PMID 16335721.
35. ^ Pfleger KD, Eidne KA (March 2006). “Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer
(BRET)”. Nature Methods. 3 (3): 165–74. doi:10.1038/nmeth841. PMID 16489332. S2CID 9759741.
36. ^ Mo XL, Luo Y, Ivanov AA, Su R, Havel JJ, Li Z, et al. (June 2016). “Enabling systematic interrogation of protein-protein interactions in live cells
with a versatile ultra-high-throughput biosensor platform”. Journal of Molecular Cell Biology. 8 (3): 271–81. doi:10.1093/jmcb/mjv064. PMC 4937889. PMID 26578655.
37. ^ Robers MB, Dart ML, Woodroofe CC, Zimprich CA, Kirkland TA, Machleidt T, et
al. (December 2015). “Target engagement and drug residence time can be observed in living cells with BRET”. Nature Communications. 6: 10091. Bibcode:2015NatCo…610091R. doi:10.1038/ncomms10091. PMC 4686764. PMID 26631872.
38. ^ Stoddart LA, Johnstone
EK, Wheal AJ, Goulding J, Robers MB, Machleidt T, et al. (July 2015). “Application of BRET to monitor ligand binding to GPCRs”. Nature Methods. 12 (7): 661–663. doi:10.1038/nmeth.3398. PMC 4488387. PMID 26030448.
39. ^ Machleidt T, Woodroofe CC,
Schwinn MK, Méndez J, Robers MB, Zimmerman K, et al. (August 2015). “NanoBRET–A Novel BRET Platform for the Analysis of Protein-Protein Interactions”. ACS Chemical Biology. 10 (8): 1797–804. doi:10.1021/acschembio.5b00143. PMID 26006698.
40. ^
Jump up to:a b Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, et al. (November 2012). “Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate”. ACS Chemical Biology. 7 (11): 1848–57. doi:10.1021/cb3002478.
PMC 3501149. PMID 22894855.
41. ^ Jump up to:a b Inouye S, Sato J, Sahara-Miura Y, Yoshida S, Kurakata H, Hosoya T (July 2013). “C6-Deoxy coelenterazine analogues as an efficient substrate for glow luminescence reaction of nanoKAZ: the mutated catalytic
19 kDa component of Oplophorus luciferase”. Biochemical and Biophysical Research Communications. 437 (1): 23–8. doi:10.1016/j.bbrc.2013.06.026. PMID 23792095.
42. ^ “NanoLuc product page”. Archived from the original on 2016-12-25. Retrieved 2016-10-25.
43. ^
Coutant EP, Gagnot G, Hervin V, Baatallah R, Goyard S, Jacob Y, et al. (January 2020). “Bioluminescence Profiling of NanoKAZ/NanoLuc Luciferase Using a Chemical Library of Coelenterazine Analogues” (PDF). Chemistry: A European Journal. 26 (4): 948–958.
doi:10.1002/chem.201904844. PMID 31765054. S2CID 208276133.
44. ^ Dixon AS, Schwinn MK, Hall MP, Zimmerman K, Otto P, Lubben TH, et al. (February 2016). “NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions
in Cells”. ACS Chemical Biology. 11 (2): 400–8. doi:10.1021/acschembio.5b00753. PMID 26569370.
45. ^ Hoare BL, Kocan M, Bruell S, Scott DJ, Bathgate RA (August 2019). “Using the novel HiBiT tag to label cell surface relaxin receptors for BRET proximity
analysis”. Pharmacology Research & Perspectives. 7 (4): e00513. doi:10.1002/prp2.513. PMC 6667744. PMID 31384473.
46. ^ Gautier I, Tramier M, Durieux C, Coppey J, Pansu RB, Nicolas JC, et al. (June 2001). “Homo-FRET microscopy in living cells to
measure monomer-dimer transition of GFP-tagged proteins”. Biophysical Journal. 80 (6): 3000–8. Bibcode:2001BpJ….80.3000G. doi:10.1016/S0006-3495(01)76265-0. PMC 1301483. PMID 11371472.
47. ^ Bader AN, Hofman EG, Voortman J, en Henegouwen PM, Gerritsen
HC (November 2009). “Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution”. Biophysical Journal. 97 (9): 2613–22. Bibcode:2009BpJ….97.2613B. doi:10.1016/j.bpj.2009.07.059. PMC 2770629. PMID 19883605.
48. ^
Heckmeier, Philipp J.; Agam, Ganesh; Teese, Mark G.; Hoyer, Maria; Stehle, Ralf; Lamb, Don C.; Langosch, Dieter (July 2020). “Determining the Stoichiometry of Small Protein Oligomers Using Steady-State Fluorescence Anisotropy”. Biophysical Journal.
119 (1): 99–114. Bibcode:2020BpJ…119…99H. doi:10.1016/j.bpj.2020.05.025. PMC 7335908. PMID 32553128.
49. ^ Gradinaru CC, Marushchak DO, Samim M, Krull UJ (March 2010). “Fluorescence anisotropy: from single molecules to live cells”. The Analyst.
135 (3): 452–9. Bibcode:2010Ana…135..452G. doi:10.1039/b920242k. PMID 20174695.
50. ^ Liu, Jiawen; Guillemeney, Lilian; Choux, Arnaud; Maître, Agnès; Abécassis, Benjamin; Coolen, Laurent (21 October 2020). “Fourier-Imaging of Single Self-Assembled
CdSe Nanoplatelet Chains and Clusters Reveals out-of-Plane Dipole Contribution”. ACS Photonics. 7 (10): 2825–2833. arXiv:2008.07610. doi:10.1021/acsphotonics.0c01066. S2CID 221150436.
51. ^ Liu, Jiawen (April 21, 2020). “Long Range Energy Transfer
in Self-Assembled Stacks of Semiconducting Nanoplatelets” (PDF). Nano Letters. 20 (5): 3465–3470. Bibcode:2020NanoL..20.3465L. doi:10.1021/acs.nanolett.0c00376. PMID 32315197. S2CID 216075288.
52. ^ Wu P, Brand L (April 1994). “Resonance energy
transfer: methods and applications”. Analytical Biochemistry. 218 (1): 1–13. doi:10.1006/abio.1994.1134. PMID 8053542.
53. ^ Szabó, Ágnes; Szendi-Szatmári, Tímea; Szöllősi, János; Nagy, Peter (2020-07-07). “Quo vadis FRET? Förster’s method in the
era of superresolution”. Methods and Applications in Fluorescence. 8 (3): 032003. Bibcode:2020MApFl…8c2003S. doi:10.1088/2050-6120/ab9b72. ISSN 2050-6120. PMID 32521530. S2CID 219588720.
54. ^ Pollok BA, Heim R (February 1999). “Using GFP in FRET-based
applications”. Trends in Cell Biology. 9 (2): 57–60. doi:10.1016/S0962-8924(98)01434-2. PMID 10087619.
55. ^ Shi Y, Stouten PF, Pillalamarri N, Barile L, Rosal RV, Teichberg S, et al. (March 2006). “Quantitative determination of the topological
propensities of amyloidogenic peptides”. Biophysical Chemistry. 120 (1): 55–61. doi:10.1016/j.bpc.2005.09.015. PMID 16288953.
56. ^ Matsumoto S, Hammes GG (January 1975). “Fluorescence energy transfer between ligand binding sites on aspartate transcarbamylase”.
Biochemistry. 14 (2): 214–24. doi:10.1021/bi00673a004. PMID 1091284.
57. ^ Martin SF, Tatham MH, Hay RT, Samuel ID (April 2008). “Quantitative analysis of multi-protein interactions using FRET: application to the SUMO pathway”. Protein Science.
17 (4): 777–84. doi:10.1110/ps.073369608. PMC 2271167. PMID 18359863.
58. ^ Truong K, Ikura M (October 2001). “The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo”. Current Opinion
in Structural Biology. 11 (5): 573–8. doi:10.1016/S0959-440X(00)00249-9. PMID 11785758.
59. ^ Chan FK, Siegel RM, Zacharias D, Swofford R, Holmes KL, Tsien RY, Lenardo MJ (August 2001). “Fluorescence resonance energy transfer analysis of cell surface
receptor interactions and signaling using spectral variants of the green fluorescent protein”. Cytometry. 44 (4): 361–8. doi:10.1002/1097-0320(20010801)44:4
<361::AID-CYTO1128>3.0.CO;2-3. PMID 11500853.
60. ^ Shih WM, Gryczynski Z, Lakowicz JR, Spudich JA (September 2000). “A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin”. Cell. 102
(5): 683–94. doi:10.1016/S0092-8674(00)00090-8. PMID 11007486.
61. ^ Sekar RB, Periasamy A (March 2003). “Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations”. The Journal of Cell Biology. 160
(5): 629–33. doi:10.1083/jcb.200210140. PMC 2173363. PMID 12615908.
62. ^ Loura LM, Prieto M (2011-11-15). “FRET in Membrane Biophysics: An Overview”. Frontiers in Physiology. 2: 82. doi:10.3389/fphys.2011.00082. PMC 3216123. PMID 22110442.
63. ^
Silvius JR, Nabi IR (2006). “Fluorescence-quenching and resonance energy transfer studies of lipid microdomains in model and biological membranes”. Molecular Membrane Biology. 23 (1): 5–16. doi:10.1080/09687860500473002. PMID 16611577. S2CID 34651742.
64. ^
Fung BK, Stryer L (November 1978). “Surface density determination in membranes by fluorescence energy transfer”. Biochemistry. 17 (24): 5241–8. doi:10.1021/bi00617a025. PMID 728398.
65. ^ Wu L, Huang C, Emery BP, Sedgwick AC, Bull SD, He XP,
et al. (August 2020). “Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents”. Chemical Society Reviews. 49 (15): 5110–5139. doi:10.1039/C9CS00318E. PMC 7408345. PMID 32697225.
66. ^ Ni Q, Zhang J (2010). “Dynamic
visualization of cellular signaling”. In Endo I, Nagamune T (eds.). Nano/Micro Biotechnology. Vol. 119. Springer. pp. 79–97. Bibcode:2010nmb..book…79N. doi:10.1007/10_2008_48. ISBN 978-3-642-14946-7. PMID 19499207. {{cite book}}: |journal= ignored
(help)
67. ^ Lohse MJ, Nuber S, Hoffmann C (April 2012). “Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling”. Pharmacological Reviews. 64 (2): 299–336. doi:10.1124/pr.110.004309.
PMID 22407612. S2CID 2042851.
68. ^ Sourjik V, Vaknin A, Shimizu TS, Berg HC (2007-01-01). “In vivo measurement by FRET of pathway activity in bacterial chemotaxis”. In Simon MI, Crane BR, Crane A (eds.). Two-Component Signaling Systems, Part
B. Methods in Enzymology. Vol. 423. Academic Press. pp. 365–91. doi:10.1016/S0076-6879(07)23017-4. ISBN 978-0-12-373852-3. PMID 17609141.
69. ^ Wu Y, Xing D, Luo S, Tang Y, Chen Q (April 2006). “Detection of caspase-3 activation in single cells
by fluorescence resonance energy transfer during photodynamic therapy induced apoptosis”. Cancer Letters. 235 (2): 239–47. doi:10.1016/j.canlet.2005.04.036. PMID 15958279.
70. ^ Liu Y, Liao J (February 2013). “Quantitative FRET (Förster Resonance
Energy Transfer) analysis for SENP1 protease kinetics determination”. Journal of Visualized Experiments (72): e4430. doi:10.3791/4430. PMC 3605757. PMID 23463095.
71. ^ Sapkota K, Kaur A, Megalathan A, Donkoh-Moore C, Dhakal S (August 2019).
“Single-Step FRET-Based Detection of Femtomoles DNA”. Sensors. 19 (16): 3495. Bibcode:2019Senso..19.3495S. doi:10.3390/s19163495. PMC 6719117. PMID 31405068.
72. ^ Lu KY, Lin CW, Hsu CH, Ho YC, Chuang EY, Sung HW, Mi FL (October 2014). “FRET-based
dual-emission and pH-responsive nanocarriers for enhanced delivery of protein across intestinal epithelial cell barrier”. ACS Applied Materials & Interfaces. 6 (20): 18275–89. doi:10.1021/am505441p. PMID 25260022.
73. ^ Yang L, Cui C, Wang L,
Lei J, Zhang J (July 2016). “Dual-Shell Fluorescent Nanoparticles for Self-Monitoring of pH-Responsive Molecule-Releasing in a Visualized Way”. ACS Applied Materials & Interfaces. 8 (29): 19084–91. doi:10.1021/acsami.6b05872. PMID 27377369.
74. ^
Heitz M, Zamolo S, Javor S, Reymond JL (June 2020). “Fluorescent Peptide Dendrimers for siRNA Transfection: Tracking pH Responsive Aggregation, siRNA Binding, and Cell Penetration” (PDF). Bioconjugate Chemistry. 31 (6): 1671–1684. doi:10.1021/acs.bioconjchem.0c00231.
PMID 32421327. S2CID 218689921.
75. ^ Sanchez-Gaytan BL, Fay F, Hak S, Alaarg A, Fayad ZA, Pérez-Medina C, Mulder WJ, Zhao Y (March 2017). “Real-Time Monitoring of Nanoparticle Formation by FRET Imaging”. Angewandte Chemie International Edition
in English. 56 (11): 2923–2926. doi:10.1002/anie.201611288. PMC 5589959. PMID 28112478.
76. ^ Alabi CA, Love KT, Sahay G, Stutzman T, Young WT, Langer R, Anderson DG (July 2012). “FRET-labeled siRNA probes for tracking assembly and disassembly
of siRNA nanocomplexes”. ACS Nano. 6 (7): 6133–41. doi:10.1021/nn3013838. PMC 3404193. PMID 22693946.
77. ^ Chen T, He B, Tao J, He Y, Deng H, Wang X, Zheng Y (March 2019). “Application of Förster Resonance Energy Transfer (FRET) technique to
elucidate intracellular and In Vivo biofate of nanomedicines”. Advanced Drug Delivery Reviews. Unraveling the In Vivo Fate and Cellular Pharmacokinetics of Drug Nanocarriers. 143: 177–205. doi:10.1016/j.addr.2019.04.009. PMID 31201837. S2CID 189898459.
78. ^
Hu CD, Chinenov Y, Kerppola TK (April 2002). “Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation”. Molecular Cell. 9 (4): 789–98. doi:10.1016/S1097-2765(02)00496-3. PMID
11983170.
Photo credit: https://www.flickr.com/photos/poppynation/5973935729/’]