gene delivery

 

  • Viruses are a particularly effective form of gene delivery because the structure of the virus prevents degradation via lysosomes of the DNA it is delivering to the nucleus
    of the host cell.

  • Agrobacterium[edit] A. tumefaciens attaching itself to a carrot cell In plants the DNA is often inserted using Agrobacterium-mediated recombination,[21] taking advantage of
    the Agrobacteriums T-DNA sequence that allows natural insertion of genetic material into plant cells.

  • This vector overcomes traditional barriers to gene delivery by combining E. coli with a synthetic polymer to create a vector that maintains plasmid DNA while having an increased
    ability to avoid degradation by target cell lysosomes.

  • [14][15] Physical[edit] Artificial gene delivery can be mediated by physical methods which uses force to introduce genetic material through the cell membrane.

  • Gene delivery is the process of introducing foreign genetic material, such as DNA or RNA, into host cells.

  • [3] This requires foreign DNA to be synthesized as part of a vector, which is designed to enter the desired host cell and deliver the transgene to that cell’s genome.

  • Chemical[edit] Chemical based methods of gene delivery can use natural or synthetic compounds to form particles that facilitate the transfer of genes into cells.

  • [18] Sonoporation allows for the entry of genetic material into cells.

  • Virus mediated gene delivery utilizes the ability of a virus to inject its DNA inside a host cell and takes advantage of the virus’ own ability to replicate and implement
    their own genetic material.

  • When genes are delivered to bacteria or plants the process is called transformation and when it is used to deliver genes to animals it is called transfection.

  • The solution, along with the DNA, is encapsulated by the cells and a small amount of DNA can be integrated into the genome.

  • Plants cells can also be transformed using electroporation, which uses an electric shock to make the cell membrane permeable to plasmid DNA.

  • [11] Most cells require some sort of intervention to make the cell membrane permeable to DNA and allow the DNA to be stably inserted into the hosts genome.

  • Viruses can only deliver very small pieces of DNA into the cells, it is labor-intensive and there are risks of random insertion sites, cytopathic effects and mutagenesis.

  • [30] Viral vector based gene delivery uses a viral vector to deliver genetic material to the host cell.

  • Biolistics[edit] A gene gun uses biolistics to insert DNA into cells Another method used to transform plant cells is biolistics, where particles of gold or tungsten are coated
    with DNA and then shot into young plant cells or plant embryos.

  • DNA microarrays used in a variety of next-gen sequencing can identify thousands of genes simultaneously, with analytical software looking at gene expression patterns, and
    orthologous genes in model species to identify function.

  • [5] Chemical vectors usually enter cells by endocytosis and can protect genetic material from degradation.

  • [9] Methods There are a variety of methods available to deliver genes to host cells.

  • [19][20] Photoporation[edit] Photoporation is when laser pulses are used to create pores in a cell membrane to allow entry of genetic material.

  • However, there are drawbacks to using viruses to deliver genes into cells.

  • [31] This has allowed a variety of possible vectors to be identified for use in gene therapy.

  • There are many different methods of gene delivery for various types of cells and tissues.

 

Works Cited

[‘Jones CH, Chen CK, Ravikrishnan A, Rane S, Pfeifer BA (November 2013). “Overcoming nonviral gene delivery barriers: perspective and future”. Molecular Pharmaceutics. 10 (11): 4082–98. doi:10.1021/mp400467x. PMC 5232591. PMID 24093932.
2. ^ Jump up
to:a b c d e f g h i Kamimura K, Suda T, Zhang G, Liu D (October 2011). “Advances in Gene Delivery Systems”. Pharmaceutical Medicine. 25 (5): 293–306. doi:10.1007/bf03256872. PMC 3245684. PMID 22200988.
3. ^ Jump up to:a b Mali S (January 2013).
“Delivery systems for gene therapy”. Indian Journal of Human Genetics. 19 (1): 3–8. doi:10.4103/0971-6866.112870. PMC 3722627. PMID 23901186.
4. ^ Gibson G, Muse SV (2009). A Primer of Genome Science (Third ed.). 23 Plumtree Rd, Sunderland, MA 01375:
Sinauer Associates. pp. 304–305. ISBN 978-0-87893-236-8.
5. ^ Jump up to:a b Pack DW, Hoffman AS, Pun S, Stayton PS (July 2005). “Design and development of polymers for gene delivery”. Nature Reviews. Drug Discovery. 4 (7): 581–93. doi:10.1038/nrd1775.
PMID 16052241. S2CID 20972049.
6. ^ Jump up to:a b c d e f Nayerossadat N, Maedeh T, Ali PA (6 July 2012). “Viral and nonviral delivery systems for gene delivery”. Advanced Biomedical Research. 1: 27. doi:10.4103/2277-9175.98152. PMC 3507026. PMID
23210086.
7. ^ Yusibov V, Shivprasad S, Turpen TH, Dawson W, Koprowski H (1999). “Plant Viral Vectors Based on Tobamoviruses”. Plant Biotechnology. Current Topics in Microbiology and Immunology. Vol. 240. pp. 81–94. doi:10.1007/978-3-642-60234-4_4.
ISBN 978-3-540-66265-5. PMID 10394716.
8. ^ Moss B, Smith GL, Gerin JL, Purcell RH (September 1984). “Live recombinant vaccinia virus protects chimpanzees against hepatitis B”. Nature. 311 (5981): 67–9. Bibcode:1984Natur.311…67M. doi:10.1038/311067a0.
PMID 6472464. S2CID 4358204.
9. ^ Avery OT, MacLeod CM, McCarty M (2017). Die Entdeckung der Doppelhelix. Klassische Texte der Wissenschaft (in German). Springer Spektrum, Berlin, Heidelberg. pp. 97–120. doi:10.1007/978-3-662-47150-0_2. ISBN 9783662471494.
S2CID 52805314.
10. ^ Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). Molecular Biology of the Cell. New York: Garland Science. p. G:35. ISBN 978-0-8153-4072-0.
11. ^ Jump up to:a b Chen I, Dubnau D (March 2004). “DNA uptake
during bacterial transformation”. Nature Reviews. Microbiology. 2 (3): 241–9. doi:10.1038/nrmicro844. PMID 15083159. S2CID 205499369.
12. ^ “Lecture 8 genetic engineering of animal cells”. www.slideshare.net. 2012-01-25. Retrieved 2018-07-18.
13. ^
Biocyclopedia.com. “Gene transfer (transfection) methods in animals | Genetic Engineering and Biotechnology Gene Transfer Methods and Transgenic Organisms | Genetics, Biotechnology, Molecular Biology, Botany | Biocyclopedia.com”. biocyclopedia.com.
Retrieved 2018-07-18.
14. ^ Yin, Feng; Gu, Bobo; Lin, Yining; Panwar, Nishtha; Tjin, Swee Chuan; Qu, Junle; Lau, Shu Ping; Yong, Ken-Tye (15 September 2017). “Functionalized 2D nanomaterials for gene delivery applications”. Coordination Chemistry
Reviews. 347: 77. doi:10.1016/j.ccr.2017.06.024. hdl:10397/95016.
15. ^ Singh BN, Prateeksha, Gupta VK, Chen J, Atanasov AG. Organic Nanoparticle-Based Combinatory Approaches for Gene Therapy. Trends Biotechnol. 2017 Dec;35(12):1121–1124. doi: 10.1016/j.tibtech.2017.07.010.
16. ^
Head G, Hull RH, Tzotzos GT (2009). Genetically Modified Plants: Assessing Safety and Managing Risk. London: Academic Pr. p. 244. ISBN 978-0-12-374106-6.
17. ^ Hwang, HH; Yu, M; Lai, EM (2017). “Agrobacterium-mediated plant transformation: biology
and applications”. Arabidopsis Book. 15: e0186. doi:10.1199/tab.0186. PMC 6501860. PMID 31068763.
18. ^ Postema M, Kotopoulis S, Delalande A, Gilja OH (2012). “Sonoporation: why microbubbles create pores”. Ultraschall in der Medizin. 33 (1): 97–98.
doi:10.1055/s-0031-1274749. S2CID 260344222.
19. ^ Delalande A, Postema M, Mignet N, Midoux P, Pichon C (2012). “Ultrasound and microbubble-assisted gene delivery: recent advances and ongoing challenges”. Therapeutic Delivery. 3 (10): 1199–1215.
doi:10.4155/TDE.12.100. PMID 23116012. S2CID 20924113.
20. ^ Delalande A, Kotopoulis S, Postema M, Midoux P, Pichon C (2013). “Sonoporation: mechanistic insights and ongoing challenges for gene transfer”. Gene. 525 (2): 191–199. doi:10.1016/j.gene.2013.03.095.
PMID 23566843.
21. ^ National Research Council (US) Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health (2004-01-01). Methods and Mechanisms for Genetic Manipulation of Plants, Animals, and Microorganisms.
National Academies Press (US).
22. ^ Gelvin SB (March 2003). “Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool”. Microbiology and Molecular Biology Reviews. 67 (1): 16–37, table of contents. doi:10.1128/MMBR.67.1.16-37.2003.
PMC 150518. PMID 12626681.
23. ^ Francis KE, Spiker S (February 2005). “Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations”. The Plant Journal. 41 (3): 464–77. doi:10.1111/j.1365-313x.2004.02312.x.
PMID 15659104.
24. ^ Schell J, Van Montagu M (1977). “The Ti-Plasmid of Agrobacterium Tumefaciens, A Natural Vector for the Introduction of NIF Genes in Plants?”. In Hollaender A, Burris RH, Day PR, Hardy RW, Helinski DR, Lamborg MR, Owens L, Valentine
RC (eds.). Genetic Engineering for Nitrogen Fixation. Basic Life Sciences. Vol. 9. pp. 159–79. doi:10.1007/978-1-4684-0880-5_12. ISBN 978-1-4684-0882-9. PMID 336023.
25. ^ Joos H, Timmerman B, Montagu MV, Schell J (1983). “Genetic analysis of transfer
and stabilization of Agrobacterium DNA in plant cells”. The EMBO Journal. 2 (12): 2151–60. doi:10.1002/j.1460-2075.1983.tb01716.x. PMC 555427. PMID 16453483.
26. ^ Thomson JA. “Genetic Engineering of Plants” (PDF). Biotechnology. 3. Retrieved 17
July 2016.
27. ^ Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, Zhou X, Chen Q (July 2013). “Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins”. Journal of Visualized Experiments. 77 (77). doi:10.3791/50521.
PMC 3846102. PMID 23913006.
28. ^ Wivel NA, Wilson JM (June 1998). “Methods of gene delivery”. Hematology/Oncology Clinics of North America. 12 (3): 483–501. doi:10.1016/s0889-8588(05)70004-6. PMID 9684094.
29. ^ Lodish H, Berk A, Zipursky SL,
et al. (2000). Molecular Cell Biology (Fourth ed.). New York: W. H. Freeman and Company. pp. Section 6.3, Viruses: Structure, Function, and Uses. ISBN 9780716737063.
30. ^ Keles E, Song Y, Du D, Dong WJ, Lin Y (August 2016). “Recent progress in
nanomaterials for gene delivery applications”. Biomaterials Science. 4 (9): 1291–309. doi:10.1039/C6BM00441E. PMID 27480033.
31. ^ Guyon I, Weston J, Barnhill S, Vapnik V (2002). “Gene Selection for Cancer Classification using Support Vector Machines”.
Machine Learning. 46: 389–422. doi:10.1023/A:1012487302797.
32. ^ Jones CH, Ravikrishnan A, Chen M, Reddinger R, Kamal Ahmadi M, Rane S, Hakansson AP, Pfeifer BA (August 2014). “Hybrid biosynthetic gene therapy vector development and dual engineering
capacity”. Proceedings of the National Academy of Sciences of the United States of America. 111 (34): 12360–5. Bibcode:2014PNAS..11112360J. doi:10.1073/pnas.1411355111. PMC 4151754. PMID 25114239.
Photo credit: https://www.flickr.com/photos/kitkaphotogirl/2481015475/’]